Papadelis Christos, Arfeller Carola, Erla Silvia, Nollo Giandomenico, Cattaneo Luigi, Braun Christoph
Laboratory of Functional Neuroimaging, Center for Mind/Brain Sciences (CIMeC), University of Trento, Via delle Regole 101, 38123 Mattarello, Italy.
MEG Center, University of Tübingen, Otfried-Müller-Str 47, 72076 Tübingen, Germany.
Brain Res. 2016 Nov 1;1650:252-266. doi: 10.1016/j.brainres.2016.09.011. Epub 2016 Sep 15.
Coordination between vision and action relies on a fronto-parietal network that receives visual and proprioceptive sensory input in order to compute motor control signals. Here, we investigated with magnetoencephalography (MEG) which cortical areas are functionally coupled on the basis of synchronization during visuomotor integration. MEG signals were recorded from twelve healthy adults while performing a unimanual visuomotor (VM) task and control conditions. The VM task required the integration of pinch motor commands with visual sensory feedback. By using a beamformer, we localized the neural activity in the frequency range of 1-30Hz during the VM compared to rest. Virtual sensors were estimated at the active locations. A multivariate autoregressive model was used to estimate the power and coherence of estimated activity at the virtual sensors. Event-related desynchronisation (ERD) during VM was observed in early visual areas, the rostral part of the left inferior frontal gyrus (IFG), the right IFG, the superior parietal lobules, and the left hand motor cortex (M1). Functional coupling in the alpha frequency band bridged the regional activities observed in motor and visual cortices (the start and the end points in the visuomotor loop) through the left or right IFG. Coherence between the left IFG and left M1 correlated inversely with the task performance. Our results indicate that an occipital-prefrontal-motor functional network facilitates the modulation of instructed motor responses to visual cues. This network may supplement the mechanism for guiding actions that is fully incorporated into the dorsal visual stream.
视觉与行动之间的协调依赖于一个额顶叶网络,该网络接收视觉和本体感觉输入,以计算运动控制信号。在此,我们使用脑磁图(MEG)研究了在视觉运动整合过程中,哪些皮质区域基于同步在功能上相互耦合。在12名健康成年人执行单手视觉运动(VM)任务及对照任务时记录MEG信号。VM任务需要将捏合运动指令与视觉感觉反馈进行整合。通过使用波束形成器,我们定位了与静息状态相比,VM过程中1 - 30Hz频率范围内的神经活动。在活跃位置估计虚拟传感器。使用多元自回归模型估计虚拟传感器处估计活动的功率和相干性。在早期视觉区域、左侧额下回(IFG)的喙部、右侧IFG、顶上小叶和左手运动皮层(M1)观察到VM过程中的事件相关去同步化(ERD)。α频段的功能耦合通过左侧或右侧IFG桥接了运动和视觉皮层中观察到的区域活动(视觉运动回路的起点和终点)。左侧IFG与左侧M1之间的相干性与任务表现呈负相关。我们的结果表明,枕叶 - 前额叶 - 运动功能网络促进了对视觉线索的指令性运动反应的调制。该网络可能补充了完全纳入背侧视觉流的引导行动的机制。