Suppr超能文献

干酪乳杆菌ATCC 393中的分解代谢物阻遏由CcpA介导。

Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.

作者信息

Monedero V, Gosalbes M J, Pérez-Martínez G

机构信息

Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Burjassot, Valencia, Spain.

出版信息

J Bacteriol. 1997 Nov;179(21):6657-64. doi: 10.1128/jb.179.21.6657-6664.1997.

Abstract

The chromosomal ccpA gene from Lactobacillus casei ATCC 393 has been cloned and sequenced. It encodes the CcpA protein, a central catabolite regulator belonging to the LacI-GalR family of bacterial repressors, and shows 54% identity with CcpA proteins from Bacillus subtilis and Bacillus megaterium. The L. casei ccpA gene was able to complement a B. subtilis ccpA mutant. An L. casei ccpA mutant showed increased doubling times and a relief of the catabolite repression of some enzymatic activities, such as N-acetylglucosaminidase and phospho-beta-galactosidase. Detailed analysis of CcpA activity was performed by using the promoter region of the L. casei chromosomal lacTEGF operon which is subject to catabolite repression and contains a catabolite responsive element (cre) consensus sequence. Deletion of this cre site or the presence of the ccpA mutation abolished the catabolite repression of a lacp::gusA fusion. These data support the role of CcpA as a common regulatory element mediating catabolite repression in low-GC-content gram-positive bacteria.

摘要

来自干酪乳杆菌ATCC 393的染色体ccpA基因已被克隆并测序。它编码CcpA蛋白,这是一种属于细菌阻遏物LacI-GalR家族的中心分解代谢调节因子,与枯草芽孢杆菌和巨大芽孢杆菌的CcpA蛋白具有54%的同一性。干酪乳杆菌ccpA基因能够互补枯草芽孢杆菌的ccpA突变体。干酪乳杆菌ccpA突变体显示出倍增时间增加,并且一些酶活性(如N-乙酰葡糖胺酶和磷酸-β-半乳糖苷酶)的分解代谢阻遏得到缓解。通过使用干酪乳杆菌染色体lacTEGF操纵子的启动子区域对CcpA活性进行了详细分析,该操纵子受到分解代谢阻遏,并且包含一个分解代谢物反应元件(cre)共有序列。该cre位点的缺失或ccpA突变的存在消除了lacp::gusA融合体的分解代谢阻遏。这些数据支持CcpA作为介导低GC含量革兰氏阳性细菌中分解代谢阻遏的常见调节元件的作用。

相似文献

1
Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.
J Bacteriol. 1997 Nov;179(21):6657-64. doi: 10.1128/jb.179.21.6657-6664.1997.
2
Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
J Bacteriol. 1999 Jul;181(13):3928-34. doi: 10.1128/JB.181.13.3928-3934.1999.
3
Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus.
Mol Microbiol. 1996 Aug;21(4):739-49. doi: 10.1046/j.1365-2958.1996.301398.x.
7
Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium.
Mol Microbiol. 1995 Jun;16(5):855-64. doi: 10.1111/j.1365-2958.1995.tb02313.x.
8
Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
Mol Microbiol. 1997 Mar;23(6):1203-13. doi: 10.1046/j.1365-2958.1997.2921662.x.
10
Cloning and characterization of the catabolite control protein A gene from Bacillus stearothermophilus No. 236.
Biosci Biotechnol Biochem. 2004 Jul;68(7):1414-23. doi: 10.1271/bbb.68.1414.

引用本文的文献

1
The plasmid-encoded lactose operon plays a vital role in the acid production rate of during milk beverage fermentation.
Front Microbiol. 2022 Oct 6;13:1016904. doi: 10.3389/fmicb.2022.1016904. eCollection 2022.
2
Lactobacilli and human dental caries: more than mechanical retention.
Microbiology (Reading). 2022 Jun;168(6). doi: 10.1099/mic.0.001196.
3
A Single-Plasmid Genome Editing System for Metabolic Engineering of .
Front Microbiol. 2018 Dec 5;9:3024. doi: 10.3389/fmicb.2018.03024. eCollection 2018.
4
Utilization of Host-Derived Glycans by Intestinal and Species.
Front Microbiol. 2018 Aug 17;9:1917. doi: 10.3389/fmicb.2018.01917. eCollection 2018.
8
Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in Lactobacillus casei BL23.
Appl Environ Microbiol. 2013 Sep;79(18):5509-18. doi: 10.1128/AEM.01177-13. Epub 2013 Jul 8.
9
Functional analysis of the Lactobacillus casei BL23 sortases.
Appl Environ Microbiol. 2012 Dec;78(24):8684-93. doi: 10.1128/AEM.02287-12. Epub 2012 Oct 5.
10
Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.
Appl Environ Microbiol. 2012 Jul;78(13):4613-9. doi: 10.1128/AEM.00474-12. Epub 2012 Apr 27.

本文引用的文献

2
Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
Mol Microbiol. 1997 Mar;23(6):1203-13. doi: 10.1046/j.1365-2958.1997.2921662.x.
4
Establishing a model to study the regulation of the lactose operon in Lactobacillus casei.
FEMS Microbiol Lett. 1997 Mar 1;148(1):83-9. doi: 10.1111/j.1574-6968.1997.tb10271.x.
6
Cyclic AMP-independent catabolite repression in bacteria.
FEMS Microbiol Lett. 1996 May 1;138(2-3):97-103. doi: 10.1111/j.1574-6968.1996.tb08141.x.
7
Significance of HPr in catabolite repression of alpha-amylase.
J Bacteriol. 1996 Dec;178(23):7014-5. doi: 10.1128/jb.178.23.7014-7015.1996.
8
Catabolite repression and inducer control in Gram-positive bacteria.
Microbiology (Reading). 1996 Feb;142 ( Pt 2):217-230. doi: 10.1099/13500872-142-2-217.
10
Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus.
Mol Microbiol. 1996 Aug;21(4):739-49. doi: 10.1046/j.1365-2958.1996.301398.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验