Bezirganyan Hakob P, Bezirganyan Siranush E, Bezirganyan Hayk H, Bezirganyan Petros H
Department of Solid State Physics, Yerevan State University, Yerevan City, AM 375025, Republic of Armenia.
J Nanosci Nanotechnol. 2007 Jan;7(1):306-15.
Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in paper, one may choose optimally the incident radiation wavelength, as well as the angle of incidence of X-ray micro beams, appropriate for proposed digital data read-out procedure.
纳米技术在信息超高存储中的应用,最重要的方面是存储介质数据载体元件的小型化,同时要注重长期稳定性。提出的具有长期稳定性的二维超高密度X射线光学存储器,名为X-ROM,是一种基本用于数字数据存档的信息载体。X-ROM是一种半导体晶圆,其中嵌入了高反射率的纳米级X射线镜。数据通过镜子的特定位置进行编码。超高密度数据记录过程例如可以通过无掩膜区板阵列光刻(ZPAL)、空间锁相电子束光刻(SPLEBL)或聚焦离子束光刻(FIB)来执行。如果最小记录坑的表面积小于100 nm²,通过纳米光刻技术制造的X-ROM是一种一次写入存储器,可用于太比特级存储应用。在这种情况下,一平方厘米的X-ROM表面存储容量比三维光学数据存储介质实际实现的体积数据密度高出两个数量级。从提出的X-ROM读取数字数据的过程例如可以通过使用成熟的X射线反射测量技术的掠角入射X射线微束(GIX)来执行。在本文提出的理论论文中,为了类似于光学数据读出系统中应用高数值孔径物镜的情况,将像图像放大器一样工作的晶体分析仪添加到X-ROM数据处理系统的设置中。我们还提出了基于多个入射X射线微束的X-ROM读出系统的设置。本文提出的双光束数据处理系统方案,在两个相互垂直且准直良好的单色入射X射线微束上运行,从本质上提高了数字信息读出过程的可靠性。根据论文中给出的特征函数图,可以最佳地选择适合所提出的数字数据读出过程的入射辐射波长以及X射线微束的入射角。