Suppr超能文献

具有横向有序的高密度锗量子点阵列的锗量子点存储结构。

Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots.

作者信息

Nassiopoulou A G, Olzierski A, Tsoi E, Berbezier I, Karmous A

机构信息

IMEL/NCSR Demokritos, Terma Patriarchou Grigoriou, 153 10 Aghia Paraskevi, Athens, Greece.

出版信息

J Nanosci Nanotechnol. 2007 Jan;7(1):316-21.

Abstract

This work was devoted to the development of a Ge quantum dot memory structure of a MOSFET type with laterally ordered Ge quantum dots within the gate dielectric stack. Lateral ordering of the Ge dots was achieved by the combination of the following technological steps: (a) use of a focused ion beam (FIB) to create ordered two-dimensional arrays of regular holes on a field oxide on the silicon substrate, (b) chemical cleaning and restoring of the Si surface in the holes, (c) further oxidation to transfer the pattern from the field oxide to the silicon substrate, (d) removal of the field oxide and thermal re-oxidation of the sample in order to create a tunneling oxide of homogeneous thickness on the patterned silicon surface, and (e) self-assembly of the two-dimensional arrays of Ge dots on the patterned tunneling oxide. The charging properties of the obtained memory structure were characterized by electrical measurements. Charging of the Ge quantum dot layer by electrons injected from the substrate resulted in a large shift in the capacitance-voltage curves of the MOS structure. Charges were stored in deep traps in the charging layer, and consequently the erasing process was difficult, resulting in a limited memory window. The advantages of controlled positioning of the quantum dots in the charging layer will be discussed.

摘要

这项工作致力于开发一种MOSFET型的锗量子点存储结构,其栅极介质层内的锗量子点呈横向有序排列。锗点的横向有序排列是通过以下工艺步骤实现的:(a) 使用聚焦离子束(FIB)在硅衬底上的场氧化层上创建规则孔的有序二维阵列;(b) 对孔内的硅表面进行化学清洗和恢复;(c) 进一步氧化,将图案从场氧化层转移到硅衬底上;(d) 去除场氧化层并对样品进行热再氧化,以便在图案化的硅表面上形成厚度均匀的隧穿氧化层;(e) 在图案化的隧穿氧化层上进行锗点二维阵列的自组装。通过电学测量对所得存储结构的充电特性进行了表征。从衬底注入的电子对锗量子点层进行充电,导致MOS结构的电容-电压曲线发生大幅偏移。电荷存储在充电层的深陷阱中,因此擦除过程困难,导致存储窗口有限。将讨论量子点在充电层中可控定位的优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验