Suppr超能文献

对兰加特病毒NS5的干扰素拮抗剂功能至关重要的残基的鉴定揭示了RNA依赖性RNA聚合酶结构域的作用。

Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain.

作者信息

Park Gregory S, Morris Keely L, Hallett Roselyn G, Bloom Marshall E, Best Sonja M

机构信息

Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA.

出版信息

J Virol. 2007 Jul;81(13):6936-46. doi: 10.1128/JVI.02830-06. Epub 2007 Apr 25.

Abstract

All pathogenic flaviviruses examined thus far inhibit host interferon (IFN) responses by suppressing the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Both Langat virus (LGTV; a member of the tick-borne encephalitis virus serogroup) and Japanese encephalitis virus use the nonstructural protein NS5 to suppress JAK-STAT signaling. However, NS5 is also critical to virus replication, contributing methyltransferase and RNA-dependent RNA polymerase (RdRP) activities. The specific amino acid residues of NS5 involved in IFN antagonism are not known. Here, we demonstrate that the LGTV NS5 JAK-STAT inhibitory domain is contained between amino acids 355 and 735 (of 903), a range which lies within the RdRP domain. Furthermore, we identified two noncontiguous stretches of specific amino acids within the RdRP, 374 to 380 and 624 to 647, as critical for inhibition of JAK-STAT signaling. Despite considerable separation on the linear NS5 sequence, these residues localized adjacent to each other when modeled on the West Nile virus RdRP crystal structure. Due to the general conservation of RdRP structures, these results suggest that the specific residues identified act cooperatively to form a unique functional site on the RdRP responsible for JAK-STAT inhibition. This insight into the mechanism underlying flavivirus IFN evasion strategies will facilitate the design of antiviral therapeutics that potentiate the action of IFN during infection.

摘要

迄今为止,所有被检测的致病性黄病毒均通过抑制Janus激酶-信号转导及转录激活因子(JAK-STAT)信号通路来抑制宿主干扰素(IFN)反应。兰加特病毒(LGTV,蜱传脑炎病毒血清群的一个成员)和日本脑炎病毒均利用非结构蛋白NS5来抑制JAK-STAT信号传导。然而,NS5对病毒复制也至关重要,它具有甲基转移酶和RNA依赖性RNA聚合酶(RdRP)活性。NS5中参与IFN拮抗作用的特定氨基酸残基尚不清楚。在此,我们证明LGTV NS5的JAK-STAT抑制结构域位于(903个氨基酸中的)355至735位氨基酸之间,该区域位于RdRP结构域内。此外,我们在RdRP结构域中确定了两段不连续的特定氨基酸序列,即374至380位和624至647位,它们对于抑制JAK-STAT信号传导至关重要。尽管在NS5线性序列上相距甚远,但当根据西尼罗河病毒RdRP晶体结构进行建模时,这些残基彼此相邻定位。由于RdRP结构的普遍保守性,这些结果表明所确定的特定残基协同作用,在RdRP上形成一个负责抑制JAK-STAT信号传导的独特功能位点。对黄病毒IFN逃逸策略潜在机制的这一深入了解将有助于设计在感染期间增强IFN作用的抗病毒治疗药物。

相似文献

5
The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling.
J Virol. 2017 Jan 18;91(3). doi: 10.1128/JVI.01970-16. Print 2017 Feb 1.
6
Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling.
Cell Microbiol. 2008 Mar;10(3):696-712. doi: 10.1111/j.1462-5822.2007.01076.x. Epub 2007 Nov 27.
7
Tick-borne flavivirus NS5 antagonizes interferon signaling by inhibiting the catalytic activity of TYK2.
EMBO Rep. 2023 Dec 6;24(12):e57424. doi: 10.15252/embr.202357424. Epub 2023 Oct 20.
9
Langat virus inhibits the gp130/JAK/STAT signaling by reducing the gp130 protein level.
J Med Virol. 2024 Apr;96(4):e29522. doi: 10.1002/jmv.29522.

引用本文的文献

3
Tick-borne flavivirus NS5 antagonizes interferon signaling by inhibiting the catalytic activity of TYK2.
EMBO Rep. 2023 Dec 6;24(12):e57424. doi: 10.15252/embr.202357424. Epub 2023 Oct 20.
4
Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis.
Front Microbiol. 2022 Mar 3;13:847588. doi: 10.3389/fmicb.2022.847588. eCollection 2022.
5
Flavivirus Persistence in Wildlife Populations.
Viruses. 2021 Oct 18;13(10):2099. doi: 10.3390/v13102099.
7
SARS-CoV-2 nsp12 attenuates type I interferon production by inhibiting IRF3 nuclear translocation.
Cell Mol Immunol. 2021 Apr;18(4):945-953. doi: 10.1038/s41423-020-00619-y. Epub 2021 Feb 26.
8
Tick-borne encephalitis virus NS4A ubiquitination antagonizes type I interferon-stimulated STAT1/2 signalling pathway.
Emerg Microbes Infect. 2020 Dec;9(1):714-726. doi: 10.1080/22221751.2020.1745094.
9
Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain.
Viral Immunol. 2020 Jan/Feb;33(1):22-37. doi: 10.1089/vim.2019.0082. Epub 2019 Nov 5.
10
Suppression of Type I Interferon Signaling by NS5.
Viruses. 2018 Dec 14;10(12):712. doi: 10.3390/v10120712.

本文引用的文献

1
Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution.
J Virol. 2007 May;81(9):4753-65. doi: 10.1128/JVI.02283-06. Epub 2007 Feb 14.
2
Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5.
J Biol Chem. 2007 Apr 6;282(14):10678-89. doi: 10.1074/jbc.M607273200. Epub 2007 Feb 7.
8
10
Mechanisms of type-I- and type-II-interferon-mediated signalling.
Nat Rev Immunol. 2005 May;5(5):375-86. doi: 10.1038/nri1604.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验