Suhm N, Toggwiler P, Hänni M, Quarz V, Appelt A
AO-Entwicklungsinstitut, Clavadelerstrasse 8, CH-7270, Davos Platz, Schweiz, Germany.
Unfallchirurg. 2007 May;110(5):467-74. doi: 10.1007/s00113-007-1272-0.
Exact placement of a guidewire is difficult for the less experienced surgeon as this complex 3D task usually is controlled by means of 2D fluoroscopic projections. The new isocentric aiming principle presented here splits up the 3D task into two planar, 2D steps. Movements of the guidewire to achieve correct placement are limited to one plane per step and can therefore be exactly controlled by fluoroscopy. The fluoroscopic projection needs to be changed only once in between the two steps.
The isocentric aiming principle became applicable to the proximal femur region by means of a mechanical aiming device. We have done an experimental study in order to compare the new isocentric aiming principle to the freehand aiming technique which is routinely applied. We documented the precision of guidewire placement achieved (angular deviation of the guidewire in two projections, linear deviation of the actual from the intended entry point), number of fluoroscopic controls, and procedure time when guidewire placement is done by an experienced and by an inexperienced surgeon.
When applying the isocentric aiming principle the inexperienced surgeon succeeded in fixing the entry angle of the guidewire more precisely both in the AP [1.3 degrees (0.0-2.0 degrees ) versus 2.3 degrees (0.0-9.0 degrees ), p=0.034] as well as in the axial view [1.0 degrees (0.0-2.5 degrees ) versus 6.5 degrees (0.0-12.0 degrees ), p=0.036]. Linear displacement was not significantly different between the two methods: 4.4 (0.7-9.6) mm deviation with the isocentric aiming principle versus 3.9 (1.6-5.7) mm, p=0.406, when the freehand technique is applied. When applying the isocentric aiming principle for guidewire placement the experienced surgeon achieved less precise angulation in the AP view [2.5 degrees (0.0-4.0 degrees ) versus 1.8 degrees (0.0-3.5 degrees ), p=0.061], improved precision in the axial view [2.0 degrees (1.0-3.0 degrees ) versus 3.0 degrees (0.0-5.0 degrees ), p=0.074], and a slightly worsened linear displacement [2.5 (1.0-4.2) mm versus 2.0 (1.0-2.6) mm, p=0.131]. Both surgeons needed less fluoroscopic controls when using the isocentric aiming principle instead of the freehand aiming method: inexperienced surgeon: 8.0 controls (7.0-16.0) instead of 13.0 controls (7.0-16.0), p=0.043; experienced surgeon: 14.5 controls (8.0-26.0) instead of 16.5 controls (12.0-33.0), p=0.282. However due to the additional time needed to fix and align the aiming device to the bone both surgeons required increased procedure time when using the isocentric aiming principle: 4.3 (3.0-6.9) min instead of 2.6 (2.2-4.0) min, p=0.005, for the inexperienced surgeon and 3.3 (2.3-4.3) min instead of 1.9 (1.4-2.8) min, p=0.001, for the experienced surgeon.
Based on the experimental results we would suggest clinical application of the isocentric aiming principle especially for the less experienced surgeon. Increased precision would outweigh the drawback of a slightly prolonged procedure time. X-ray exposure may also be reduced when using the isocentric aiming principle for guidewire placement. However our results have to be verified by a clinical study beforehand. The isocentric aiming principle can also be applied in other situations that allow for two orthogonal projections for guidewire placement.
对于经验不足的外科医生而言,导丝的精确放置颇具难度,因为这项复杂的三维任务通常借助二维荧光透视投影来控制。此处介绍的新的等中心瞄准原理将三维任务分解为两个平面的二维步骤。为实现正确放置,导丝的移动在每个步骤中仅限于一个平面,因此可通过荧光透视精确控制。在这两个步骤之间,荧光透视投影仅需改变一次。
借助一种机械瞄准装置,等中心瞄准原理适用于股骨近端区域。我们开展了一项实验研究,以将新的等中心瞄准原理与常规应用的徒手瞄准技术进行比较。我们记录了导丝放置的精度(导丝在两个投影中的角度偏差、实际进针点与预期进针点的线性偏差)、荧光透视控制的次数以及经验丰富和经验不足的外科医生进行导丝放置时的操作时间。
应用等中心瞄准原理时,经验不足的外科医生在前后位(AP)[1.3度(0.0 - 2.0度)对2.3度(0.0 - 9.0度),p = 0.034]以及轴位视图[1.0度(0.0 - 2.5度)对6.5度(0.0 - 12.0度),p = 0.036]中更精确地固定了导丝的进针角度。两种方法之间的线性位移无显著差异:应用等中心瞄准原理时偏差为4.4(0.7 - 9.6)mm,应用徒手技术时为3.9(1.6 - 5.7)mm,p = 0.406。在应用等中心瞄准原理进行导丝放置时,经验丰富的外科医生在前后位视图中的角度精确性较低[2.5度(0.0 - 4.0度)对1.8度(0.0 - 3.5度),p = 0.061],在轴位视图中精度有所提高[2.0度(1.0 - 3.0度)对3.0度(0.0 - 5.0度),p = 0.074],线性位移略有恶化[2.5(1.0 - 4.2)mm对2.0(1.0 - 2.6)mm,p = 0.131]。与徒手瞄准方法相比,两位外科医生在使用等中心瞄准原理时所需的荧光透视控制次数均较少:经验不足的外科医生:8.0次控制(7.0 - 16.0)而非13.0次控制(7.0 - 16.0),p = 0.043;经验丰富的外科医生:14.5次控制(8.0 - 26.0)而非16.5次控制(12.0 - 33.0),p = 0.282。然而,由于将瞄准装置固定并对准骨骼需要额外时间,两位外科医生在使用等中心瞄准原理时操作时间均增加:经验不足的外科医生为4.3(3.0 - 6.9)分钟而非2.6(2.2 - 4.0)分钟,p = 0.005;经验丰富的外科医生为3.3(2.3 - 4.3)分钟而非1.9(1.4 - 2.8)分钟,p = 0.001。
基于实验结果,我们建议等中心瞄准原理尤其适用于经验不足的外科医生进行临床应用。精度的提高将超过操作时间略有延长的缺点。在应用等中心瞄准原理进行导丝放置时,X射线暴露也可能减少。然而,我们的结果必须事先通过临床研究进行验证。等中心瞄准原理也可应用于其他允许进行两个正交投影以放置导丝的情况。