Suppr超能文献

通过肽设计控制水凝胶化动力学以实现细胞的三维包封和可注射递送。

Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells.

作者信息

Haines-Butterick Lisa, Rajagopal Karthikan, Branco Monica, Salick Daphne, Rughani Ronak, Pilarz Matthew, Lamm Matthew S, Pochan Darrin J, Schneider Joel P

机构信息

Department of Chemistry and Biochemistry, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 May 8;104(19):7791-6. doi: 10.1073/pnas.0701980104. Epub 2007 Apr 30.

Abstract

A peptide-based hydrogelation strategy has been developed that allows homogenous encapsulation and subsequent delivery of C3H10t1/2 mesenchymal stem cells. Structure-based peptide design afforded MAX8, a 20-residue peptide that folds and self-assembles in response to DMEM resulting in mechanically rigid hydrogels. The folding and self-assembly kinetics of MAX8 have been tuned so that when hydrogelation is triggered in the presence of cells, the cells become homogeneously impregnated within the gel. A unique characteristic of these gel-cell constructs is that when an appropriate shear stress is applied, the hydrogel will shear-thin resulting in a low-viscosity gel. However, after the application of shear has stopped, the gel quickly resets and recovers its initial mechanical rigidity in a near quantitative fashion. This property allows gel/cell constructs to be delivered via syringe with precision to target sites. Homogenous cellular distribution and cell viability are unaffected by the shear thinning process and gel/cell constructs stay fixed at the point of introduction, suggesting that these gels may be useful for the delivery of cells to target biological sites in tissue regeneration efforts.

摘要

已经开发出一种基于肽的水凝胶化策略,该策略允许对C3H10t1/2间充质干细胞进行均匀封装并随后进行递送。基于结构的肽设计产生了MAX8,这是一种由20个氨基酸残基组成的肽,它在DMEM的作用下折叠并自组装,形成机械刚性水凝胶。MAX8的折叠和自组装动力学已得到调整,以便在细胞存在的情况下触发水凝胶化时,细胞能均匀地包埋在凝胶中。这些凝胶-细胞构建体的一个独特特性是,当施加适当的剪切应力时,水凝胶会发生剪切变稀,形成低粘度凝胶。然而,在停止施加剪切力后,凝胶会迅速恢复并几乎以定量方式恢复其初始机械刚性。这一特性使得凝胶/细胞构建体能够通过注射器精确地递送至目标部位。均匀的细胞分布和细胞活力不受剪切变稀过程的影响,并且凝胶/细胞构建体在引入点处保持固定,这表明这些凝胶可能有助于在组织再生过程中将细胞递送至目标生物部位。

相似文献

1
Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7791-6. doi: 10.1073/pnas.0701980104. Epub 2007 Apr 30.
3
Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.
Biomaterials. 2012 Oct;33(30):7478-88. doi: 10.1016/j.biomaterials.2012.06.097. Epub 2012 Jul 28.
4
Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
ACS Appl Mater Interfaces. 2014 Aug 27;6(16):14360-8. doi: 10.1021/am5036303. Epub 2014 Aug 8.
6
Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload.
Langmuir. 2012 Apr 10;28(14):6076-87. doi: 10.1021/la2041746. Epub 2012 Mar 27.
8
Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels.
Adv Healthc Mater. 2013 Jul;2(7):1028-36. doi: 10.1002/adhm.201200343. Epub 2013 Jan 8.
9
Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
J Am Chem Soc. 2002 Dec 18;124(50):15030-7. doi: 10.1021/ja027993g.
10
Introducing chemical functionality in Fmoc-peptide gels for cell culture.
Acta Biomater. 2009 Mar;5(3):934-43. doi: 10.1016/j.actbio.2009.01.006. Epub 2009 Jan 18.

引用本文的文献

1
Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides.
Biomimetics (Basel). 2025 Jul 4;10(7):442. doi: 10.3390/biomimetics10070442.
4
Exploring the temperature dependence of β-hairpin peptide self-assembly.
Faraday Discuss. 2025 May 14. doi: 10.1039/d5fd00018a.
5
Exploring the Chemical Features and Biomedical Relevance of Cell-Penetrating Peptides.
Int J Mol Sci. 2024 Dec 25;26(1):59. doi: 10.3390/ijms26010059.
6
Biomimetic peptide self-assembly for functional materials.
Nat Rev Chem. 2020 Sep 15;4(11):615-634. doi: 10.1038/s41570-020-0215-y.
8
Applications of self-assembled peptide hydrogels in anti-tumor therapy.
Nanoscale Adv. 2024 Apr 30;6(12):2993-3008. doi: 10.1039/d4na00172a. eCollection 2024 Jun 11.
9
Dual-Modified Hyaluronic Acid for Tunable Double Cross-Linked Hydrogel Adhesives.
Biomacromolecules. 2024 Apr 8;25(4):2645-2655. doi: 10.1021/acs.biomac.4c00194. Epub 2024 Mar 8.
10
Peptide-Hydrogel Nanocomposites for Anti-Cancer Drug Delivery.
Gels. 2023 Dec 4;9(12):953. doi: 10.3390/gels9120953.

本文引用的文献

3
Scaffolds for liver tissue engineering.
Expert Rev Med Devices. 2006 Jan;3(1):21-7. doi: 10.1586/17434440.3.1.21.
5
Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly.
J Am Chem Soc. 2005 Nov 30;127(47):16692-700. doi: 10.1021/ja054721f.
6
Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
Eur Biophys J. 2006 Jan;35(2):162-9. doi: 10.1007/s00249-005-0017-7. Epub 2005 Nov 8.
8
New physically and chemically crosslinked hyaluronate (HA)-based hydrogels for cartilage repair.
J Biomed Mater Res A. 2006 Feb;76(2):416-24. doi: 10.1002/jbm.a.30536.
10
Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus.
Biomacromolecules. 2005 May-Jun;6(3):1316-21. doi: 10.1021/bm049284w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验