Elles Christopher G, Shkrob Ilya A, Crowell Robert A, Bradforth Stephen E
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
J Chem Phys. 2007 Apr 28;126(16):164503. doi: 10.1063/1.2727468.
The authors use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The primary decay mechanism changes from dissociation at an excitation energy of 8.3 eV to ionization at 12.4 eV. The two channels occur with similar yield for an excitation energy of 9.3 eV. For the lowest excitation energy, the transient absorption at 267 nm probes the geminate recombination kinetics of the H and OH fragments, providing a window on the dissociation dynamics. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7+/-0.2 nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O-H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies.
作者使用瞬态吸收光谱法来监测纯液态水双光子激发后的电离和解离产物。主要衰变机制从8.3电子伏特激发能量下的解离转变为12.4电子伏特下的电离。在9.3电子伏特的激发能量下,这两个通道以相似的产率出现。对于最低的激发能量,267纳米处的瞬态吸收探测了H和OH碎片的偕偶复合动力学,为解离动力学提供了一个窗口。对OH偕偶复合的建模表明,解离的H原子具有足够的动能来逃离溶剂笼以及一个或两个额外的溶剂壳层。H和OH碎片的平均初始间距为0.7±0.2纳米。我们的观察表明,氢键环境不会阻止激发态下O-H键的直接解离。我们讨论了我们的测量对液态水激发态动力学的影响,并探讨了这些动力学在低激发能量下电离机制中的作用。