Department of Physics, University of Konstanz, 78457 Konstanz, Germany.
Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2220132120. doi: 10.1073/pnas.2220132120. Epub 2023 Jun 12.
Understanding and predicting the outcome of the interaction of light with DNA has a significant impact on the study of DNA repair and radiotherapy. We report on a combination of femtosecond pulsed laser microirradiation at different wavelengths, quantitative imaging, and numerical modeling that yields a comprehensive picture of photon-mediated and free-electron-mediated DNA damage pathways in live cells. Laser irradiation was performed under highly standardized conditions at four wavelengths between 515 nm and 1,030 nm, enabling to study two-photon photochemical and free-electron-mediated DNA damage in situ. We quantitatively assessed cyclobutane pyrimidine dimer (CPD) and γH2AX-specific immunofluorescence signals to calibrate the damage threshold dose at these wavelengths and performed a comparative analysis of the recruitment of DNA repair factors xeroderma pigmentosum complementation group C (XPC) and Nijmegen breakage syndrome 1 (Nbs1). Our results show that two-photon-induced photochemical CPD generation dominates at 515 nm, while electron-mediated damage dominates at wavelengths ≥620 nm. The recruitment analysis revealed a cross talk between nucleotide excision and homologous recombination DNA repair pathways at 515 nm. Numerical simulations predicted electron densities and electron energy spectra, which govern the yield functions of a variety of direct electron-mediated DNA damage pathways and of indirect damage by OH radicals resulting from laser and electron interactions with water. Combining these data with information on free electron-DNA interactions gained in artificial systems, we provide a conceptual framework for the interpretation of the wavelength dependence of laser-induced DNA damage that may guide the selection of irradiation parameters in studies and applications that require the selective induction of DNA lesions.
理解和预测光与 DNA 相互作用的结果对 DNA 修复和放射治疗的研究有重大影响。我们报告了飞秒脉冲激光微照射在不同波长下的组合、定量成像和数值模拟,这些方法提供了活细胞中光介导和自由电子介导的 DNA 损伤途径的综合图像。激光照射在 515nm 至 1030nm 之间的四个波长下,在高度标准化的条件下进行,能够原位研究双光子光化学和自由电子介导的 DNA 损伤。我们定量评估了环丁烷嘧啶二聚体(CPD)和 γH2AX 特异性免疫荧光信号,以校准这些波长下的损伤阈值剂量,并对 DNA 修复因子 Xeroderma pigmentosum complementation group C(XPC)和 Nijmegen breakage syndrome 1(Nbs1)的募集进行了比较分析。我们的结果表明,双光子诱导的光化学 CPD 生成在 515nm 时占主导地位,而电子介导的损伤在波长≥620nm 时占主导地位。募集分析表明,在 515nm 时核苷酸切除和同源重组 DNA 修复途径之间存在交叉对话。数值模拟预测了电子密度和电子能谱,这些密度和能谱控制着各种直接电子介导的 DNA 损伤途径以及激光和电子与水相互作用产生的 OH 自由基引起的间接损伤的产率函数。将这些数据与在人工系统中获得的关于自由电子-DNA 相互作用的信息结合起来,我们为解释激光诱导的 DNA 损伤的波长依赖性提供了一个概念框架,这可能指导在需要选择性诱导 DNA 损伤的研究和应用中选择辐照参数。