Suppr超能文献

极紫外脉冲诱导水辐射分解和水合电子形成的实时观测

Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses.

作者信息

Svoboda Vít, Michiels Rupert, LaForge Aaron C, Med Jakub, Stienkemeier Frank, Slavíček Petr, Wörner Hans Jakob

机构信息

Laboratory of Physical Chemistry, ETH-Zürich, 8093 Zürich, Switzerland.

Institute of Physics, University of Freiburg, 79104 Freiburg, Germany.

出版信息

Sci Adv. 2020 Jan 17;6(3):eaaz0385. doi: 10.1126/sciadv.aaz0385. eCollection 2020 Jan.

Abstract

The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging. Results are presented for HO and DO clusters using femtosecond pump pulses centered at 133 or 80 nm. In both excitation schemes, hydrogen or proton transfer is observed to yield a prehydrated electron within 30 to 60 fs, followed by its solvation in 0.3 to 1.0 ps and its decay through geminate recombination on a ∼10-ps time scale. These results are interpreted by comparison with detailed multiconfigurational non-adiabatic ab-initio molecular dynamics calculations. Our results provide the first comprehensive picture of the primary steps of radiation chemistry and radiation damage and demonstrate new approaches for their study with unprecedented time resolution.

摘要

辐射损伤的主要途径始于水的电离。然而,迄今为止,潜在的初级过程尚未得到确凿的阐明。在此,我们通过使用时间分辨光电子成像对大型水团簇进行单光子激发,直接研究极紫外(XUV)诱导的水辐射分解的最早步骤。给出了使用中心波长为133或80 nm的飞秒泵浦脉冲对HO和DO团簇的研究结果。在这两种激发方案中,均观察到氢或质子转移在30至60飞秒内产生一个预水合电子,随后在0.3至1.0皮秒内发生溶剂化,并在约10皮秒的时间尺度上通过偕二聚体复合而衰减。通过与详细的多组态非绝热从头算分子动力学计算进行比较,对这些结果进行了解释。我们的结果提供了辐射化学和辐射损伤初级步骤的首张全面图景,并展示了以前所未有的时间分辨率对其进行研究的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51c0/6968931/f55839d6c7ce/aaz0385-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验