Suppr超能文献

细胞脂肪酸分析的应用

Applications of cellular fatty acid analysis.

作者信息

Welch D F

机构信息

Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City 73126.

出版信息

Clin Microbiol Rev. 1991 Oct;4(4):422-38. doi: 10.1128/CMR.4.4.422.

Abstract

More than ever, new technology is having an impact on the tools of clinical microbiologists. The analysis of cellular fatty acids by gas-liquid chromatography (GLC) has become markedly more practical with the advent of the fused-silica capillary column, computer-controlled chromatography and data analysis, simplified sample preparation, and a commercially available GLC system dedicated to microbiological applications. Experience with applications in diagnostic microbiology ranges from substantial success in work with mycobacteria, legionellae, and nonfermentative gram-negative bacilli to minimal involvement with fungi and other nonbacterial agents. GLC is a good alternative to other means for the identification of mycobacteria or legionellae because it is rapid, specific, and independent of other specialized testing, e.g., DNA hybridization. Nonfermenters show features in their cellular fatty acid content that are useful in identifying species and, in some cases, subspecies. Less frequently encountered nonfermenters, including those belonging to unclassified groups, can ideally be characterized by GLC. Information is just beginning to materialize on the usefulness of cellular fatty acids for the identification of gram-positive bacteria and anaerobes, despite the traditional role of GLC in detecting metabolic products as an aid to identification of anaerobes. When species identification of coagulase-negative staphylococci is called for, GLC may offer an alternative to biochemical testing. Methods for direct analysis of clinical material have been developed, but in practical and economic terms they are not yet ready for use in the clinical laboratory. Direct analysis holds promise for detecting markers of infection due to an uncultivable agent or in clinical specimens that presently require cultures and prolonged incubation to yield an etiologic agent.

摘要

新技术对临床微生物学家的工具产生的影响比以往任何时候都更大。随着熔融石英毛细管柱、计算机控制的色谱分析和数据分析技术的出现,样品制备的简化,以及专门用于微生物学应用的市售气相色谱系统的问世,通过气液色谱法(GLC)分析细胞脂肪酸已变得明显更加实用。在诊断微生物学中的应用经验涵盖范围广泛,从在分枝杆菌、军团菌和非发酵革兰氏阴性杆菌的检测中取得巨大成功,到在真菌和其他非细菌病原体检测中的参与度较低。GLC是鉴定分枝杆菌或军团菌的其他方法的良好替代方法,因为它快速、特异,且不依赖于其他专门检测,例如DNA杂交。非发酵菌在其细胞脂肪酸含量方面呈现出有助于鉴定菌种以及在某些情况下鉴定亚种的特征。较少见的非发酵菌,包括那些属于未分类组别的菌株,理想情况下可用GLC进行鉴定。尽管GLC在检测代谢产物以辅助鉴定厌氧菌方面具有传统作用,但关于细胞脂肪酸在鉴定革兰氏阳性菌和厌氧菌方面的有用性的信息才刚刚开始显现。当需要对凝固酶阴性葡萄球菌进行菌种鉴定时,GLC可能提供一种替代生化检测的方法。已经开发出直接分析临床材料的方法,但从实际和经济角度来看,它们尚未准备好在临床实验室中使用。直接分析有望检测出由不可培养病原体引起的感染标志物,或在目前需要培养和长时间孵育以产生病原体的临床标本中检测到感染标志物。

相似文献

1
Applications of cellular fatty acid analysis.
Clin Microbiol Rev. 1991 Oct;4(4):422-38. doi: 10.1128/CMR.4.4.422.
3
Gas-liquid chromatography as an analytical tool in microbiology.
J Chromatogr. 1981 Jan 9;203:337-47. doi: 10.1016/s0021-9673(00)80305-2.
6
Cellular fatty acids and metabolic products of Pseudomonas species obtained from clinical specimens.
J Clin Microbiol. 1976 Dec;4(6):492-502. doi: 10.1128/jcm.4.6.492-502.1976.
7
Cellular fatty acids in Fusobacterium species as a tool for identification.
J Clin Microbiol. 1992 Dec;30(12):3225-9. doi: 10.1128/jcm.30.12.3225-3229.1992.
8
Gas-liquid chromatographic analysis of cellular fatty acids for identification of gram-negative anaerobic bacilli.
J Clin Microbiol. 1991 Nov;29(11):2636-8. doi: 10.1128/jcm.29.11.2636-2638.1991.
9
Rapid diagnosis of anaerobic infections by gas-liquid chromatography.
J Clin Pathol. 1979 Nov;32(11):1163-7. doi: 10.1136/jcp.32.11.1163.
10
Rapid identification of mycobacteria using gas liquid chromatography.
Pathology. 1985 Jan;17(1):24-8. doi: 10.3109/00313028509063718.

引用本文的文献

1
In vitro alternative for reactogenicity assessment of outer membrane vesicle based vaccines.
Sci Rep. 2023 Aug 4;13(1):12675. doi: 10.1038/s41598-023-39908-7.
4
Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs.
Ecol Evol. 2019 Jul 15;9(16):9027-9039. doi: 10.1002/ece3.5449. eCollection 2019 Aug.
6
Taxonomy and evolution of , and in the omics era - Past, present and future.
Comput Struct Biotechnol J. 2018 May 31;16:197-210. doi: 10.1016/j.csbj.2018.05.003. eCollection 2018.
8
Analysis of Chemical Signatures of Alkaliphiles using Fatty Acid Methyl Ester Analysis.
J Pharm Bioallied Sci. 2017 Apr-Jun;9(2):106-114. doi: 10.4103/jpbs.JPBS_286_16.
9
Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis.
PLoS One. 2013 May 31;8(5):e65157. doi: 10.1371/journal.pone.0065157. Print 2013.
10
Chemotaxonomy of heterocystous cyanobacteria using FAME profiling as species markers.
Protoplasma. 2012 Jul;249(3):651-61. doi: 10.1007/s00709-011-0303-4. Epub 2011 Jul 16.

本文引用的文献

1
EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI.
J Bacteriol. 1962 Dec;84(6):1260-7. doi: 10.1128/jb.84.6.1260-1267.1962.
4
THE FATTY ACIDS OF TRICHOPHYTON RUBRUM.
Can J Microbiol. 1964 Feb;10:23-7. doi: 10.1139/m64-004.
6
Cellular fatty acid composition of group IVe, a nonsaccharolytic organism from clinical sources.
J Clin Microbiol. 1980 Jun;11(6):664-8. doi: 10.1128/jcm.11.6.664-668.1980.
7
Cellular fatty acid composition of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus.
J Clin Microbiol. 1980 Jun;11(6):625-30. doi: 10.1128/jcm.11.6.625-630.1980.
8
Cellular fatty acid composition of Campylobacter fetus.
J Clin Microbiol. 1980 May;11(5):448-51. doi: 10.1128/jcm.11.5.448-451.1980.
9
Fatty acids and neutral sugars present in lipopolysaccharides isolated from Fusobacterium species.
Acta Pathol Microbiol Scand B. 1980 Apr;88(2):115-20. doi: 10.1111/j.1699-0463.1980.tb02615.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验