Suppr超能文献

在护理学与健康领域累积索引数据库(CINAHL)中识别质性研究的检索策略。

Search strategies for identifying qualitative studies in CINAHL.

作者信息

Wilczynski Nancy L, Marks Susan, Haynes R Brian

机构信息

McMaster University, Hamilton, Ontario, Canada.

出版信息

Qual Health Res. 2007 May;17(5):705-10. doi: 10.1177/1049732306294515.

Abstract

Nurses, allied health professionals, clinicians, and researchers increasingly use online access to evidence in the course of patient care or when conducting reviews on a particular topic. Qualitative research has an important role in evidence-based health care. Online searching for qualitative studies can be difficult, however, resulting in the need to develop search filters. The objective of this study was to develop optimal search strategies to retrieve qualitative studies in CINAHL for the 2000 publishing year. The authors conducted an analytic survey comparing hand searches of journals with retrievals from CINAHL for candidate search terms and combinations. Combinations of search terms reached peak sensitivities of 98.9% and peak specificities of 99.5%. Combining search terms optimized both sensitivity and specificity at 94.2%. Empirically derived search strategies combining indexing terms and textwords can achieve high sensitivity and high specificity for retrieving qualitative studies from CINAHL.

摘要

护士、专职医疗人员、临床医生和研究人员在患者护理过程中或对特定主题进行综述时,越来越多地通过在线方式获取证据。定性研究在循证医疗中具有重要作用。然而,在线搜索定性研究可能会很困难,因此需要开发搜索过滤器。本研究的目的是制定最佳搜索策略,以检索CINAHL中2000年出版年份的定性研究。作者进行了一项分析性调查,将期刊的手工检索结果与从CINAHL中检索的候选搜索词及组合进行比较。搜索词组合的灵敏度峰值为98.9%,特异性峰值为99.5%。将搜索词组合起来可使灵敏度和特异性在94.2%时达到最佳。结合索引词和文本词通过实证得出的搜索策略,在从CINAHL中检索定性研究时可实现高灵敏度和高特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验