Suppr超能文献

利用相位信息对膝关节骨骼进行磁共振图像分割。

MR image segmentation of the knee bone using phase information.

作者信息

Bourgeat Pierrick, Fripp Jurgen, Stanwell Peter, Ramadan Saadallah, Ourselin Sébastien

机构信息

BioMedIA Lab, E-Health Research Centre, CSIRO ICT Centre, Brisbane, Australia.

出版信息

Med Image Anal. 2007 Aug;11(4):325-35. doi: 10.1016/j.media.2007.03.003. Epub 2007 Mar 30.

Abstract

Magnetic resonance (MR) imaging is a widely available and well accepted non invasive imaging technique. Development of automatic and semi-automatic techniques to analyse MR images has been the focus of much research and numerous publications. However, most of this research only uses the magnitude of the acquired complex MR signal, discarding the phase information. In MR, the phase relates to the magnetic properties of tissues, information which is not found in the magnitude signal. As a result, phase is a complement to the magnitude signal and can improve the segmentation and analysis of MR images. In this paper, we consider the automatic classification of textured tissues in 3D MRI. Specifically, we include features extracted from the phase of the MR signal to improve texture discrimination in the bone segmentation. Our approach does not require phase unwrapping, with the MR signal processed in its complex form. The extra information extracted from the phase provides better segmentation, compared to only using magnitude features. The segmentation approach is integrated within a novel multiscale scheme, designed to improve the speed of pixel based classification algorithms, such as support vector machines. An order of magnitude increase is obtained, by reducing the number of pixels that need to be classified.

摘要

磁共振(MR)成像是一种广泛应用且被广泛接受的非侵入性成像技术。开发自动和半自动技术来分析MR图像一直是众多研究和大量出版物的重点。然而,大多数此类研究仅使用采集到的复数MR信号的幅度,而丢弃了相位信息。在MR中,相位与组织的磁特性相关,而幅度信号中没有这些信息。因此,相位是幅度信号的补充,可以改善MR图像的分割和分析。在本文中,我们考虑对3D MRI中的纹理组织进行自动分类。具体而言,我们纳入了从MR信号相位中提取的特征,以改善骨分割中的纹理辨别。我们的方法不需要相位解缠,而是以复数形式处理MR信号。与仅使用幅度特征相比,从相位中提取的额外信息提供了更好的分割效果。该分割方法集成在一种新颖的多尺度方案中,旨在提高基于像素分类算法(如支持向量机)的速度。通过减少需要分类的像素数量,实现了数量级的提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验