Penny W D, Kilner J, Blankenburg F
Wellcome Department of Imaging Neuroscience, University College London, London WC1N 3BG, UK.
Neuroimage. 2007 Jul 1;36(3):661-71. doi: 10.1016/j.neuroimage.2007.01.058. Epub 2007 May 7.
We describe a Bayesian learning algorithm for Robust General Linear Models (RGLMs). The noise is modeled as a Mixture of Gaussians rather than the usual single Gaussian. This allows different data points to be associated with different noise levels and effectively provides a robust estimation of regression coefficients. A variational inference framework is used to prevent overfitting and provides a model order selection criterion for noise model order. This allows the RGLM to default to the usual GLM when robustness is not required. The method is compared to other robust regression methods and applied to synthetic data and fMRI.
我们描述了一种用于稳健广义线性模型(RGLMs)的贝叶斯学习算法。噪声被建模为高斯混合模型,而不是通常的单个高斯模型。这使得不同的数据点可以与不同的噪声水平相关联,并有效地提供回归系数的稳健估计。使用变分推理框架来防止过拟合,并为噪声模型阶数提供模型阶数选择标准。这使得RGLM在不需要稳健性时可以默认使用通常的GLM。该方法与其他稳健回归方法进行了比较,并应用于合成数据和功能磁共振成像(fMRI)。