Pysher Michele D, Hayes Mark A
Department of Chemistry and Biochemistry and Arizona Applied NanoSensors, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, USA.
Anal Chem. 2007 Jun 15;79(12):4552-7. doi: 10.1021/ac070534j. Epub 2007 May 8.
We describe a new device for separation of complex biological particles and structures exploiting many physical properties of the biolytes. The device adds a new longitudinal gradient feature to insulator dielectrophoresis, extending the technique to separation of complex mixtures in a single channel. The production of stronger local field gradients along a global gradient allows particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. In this work, the separation mechanism is described in terms of the relevant electromechanical principles, and proof-of-principle is demonstrated using various bacteria cells as model systems. The results demonstrate the selectivity of the technique and suggest that it may form the foundation for a versatile and useful tool for separating mixtures of complex biological particles and structures.
我们描述了一种利用生物电解质的多种物理特性来分离复杂生物颗粒和结构的新装置。该装置为绝缘介质电泳增添了一种新的纵向梯度特性,将该技术扩展到在单个通道中分离复杂混合物。沿着全局梯度产生更强的局部场梯度,使颗粒能够进入,最初通过电泳和电渗作用在通道中传输,并根据其特征物理特性(包括电荷、极化率、可变形性、表面电荷迁移率、介电特性和局部电容)进行分离。在这项工作中,根据相关的机电原理描述了分离机制,并使用各种细菌细胞作为模型系统进行了原理验证。结果证明了该技术的选择性,并表明它可能为分离复杂生物颗粒和结构混合物的通用且有用的工具奠定基础。