Suppr超能文献

利用芯片上单细胞培养系统同时测量生长和游动特性,研究细胞分裂过程中两个子细胞个体性的起源。

Origin of individuality of two daughter cells during the division process examined by the simultaneous measurement of growth and swimming property using an on-chip single-cell cultivation system.

作者信息

Umehara Senkei, Inoue Ippei, Wakamoto Yuichi, Yasuda Kenji

机构信息

Department of Biomedical Information, Division of Biosystems, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Tokyo 101-0062, Japan.

出版信息

Biophys J. 2007 Aug 1;93(3):1061-7. doi: 10.1529/biophysj.106.098061. Epub 2007 May 11.

Abstract

We examined the origin of individuality of two daughter cells born from an isolated single Escherichia coli mother cell during its cell division process by monitoring the change in its swimming behavior and tumbling frequency using an on-chip single-cell cultivation system. By keeping the isolated condition of an observed single cell, we compared its growth and swimming property within a generation and over up to seven generations. It revealed that running speed decreased as cell length smoothly increased within each generation, whereas tumbling frequency fluctuated among generations. Also found was an extraordinary tumbling mode characterized by the prolonged duration of pausing in predivisional cells after cell constriction. The observed prolonged pausing may imply the coexistence of two distinct control systems in a predivisional cell, indicating that individuality of daughter cells emerges after a mother cell initiates constriction and before it gets physically separated into two new cell bodies.

摘要

我们通过使用芯片上的单细胞培养系统监测其游动行为和翻滚频率的变化,研究了单个分离的大肠杆菌母细胞在细胞分裂过程中产生的两个子细胞的个体性起源。通过保持观察到的单个细胞的分离状态,我们比较了其在一代内以及多达七代中的生长和游动特性。结果表明,在每一代中,随着细胞长度的平稳增加,游动速度下降,而翻滚频率在各代之间波动。还发现了一种特殊的翻滚模式,其特征是细胞缢缩后分裂前细胞的暂停持续时间延长。观察到的延长暂停可能意味着分裂前细胞中存在两种不同的控制系统,这表明子细胞的个体性在母细胞开始缢缩后且在其物理上分离成两个新细胞体之前就已出现。

相似文献

3
Diverse paths to midcell: assembly of the bacterial cell division machinery.
Curr Biol. 2005 Jul 12;15(13):R514-26. doi: 10.1016/j.cub.2005.06.038.
7
Cell cycle dynamics inferred from the static properties of cells in balanced growth.
J Gen Microbiol. 1982 Dec;128(12):2877-92. doi: 10.1099/00221287-128-12-2877.
8
Robustness of the division symmetry in Escherichia coli and functional consequences of symmetry breaking.
Phys Biol. 2014 Nov 10;11(6):066005. doi: 10.1088/1478-3975/11/6/066005.
9
Daughter cells as an important factor in determining the physiological state of yeast populations.
Biotechnol Bioeng. 1976 Mar;18(3):297-309. doi: 10.1002/bit.260180303.
10
Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells.
Biochem Biophys Res Commun. 2007 May 4;356(2):464-9. doi: 10.1016/j.bbrc.2007.03.001. Epub 2007 Mar 7.

引用本文的文献

1
Autocatalytic Nucleation and Self-Assembly of Inorganic Nanoparticles into Complex Biosimilar Networks.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202413444. doi: 10.1002/anie.202413444. Epub 2025 Jan 20.
2
Dominant rule of community effect in synchronized beating behavior of cardiomyocyte networks.
Biophys Rev. 2020 Apr;12(2):481-501. doi: 10.1007/s12551-020-00688-3. Epub 2020 May 4.
3
Biophysics at Waseda University.
Biophys Rev. 2020 Apr;12(2):225-232. doi: 10.1007/s12551-020-00638-z. Epub 2020 Mar 10.
4
Single Cell Isolation Using Optical Tweezers.
Micromachines (Basel). 2018 Aug 29;9(9):434. doi: 10.3390/mi9090434.
5
Environment determines evolutionary trajectory in a constrained phenotypic space.
Elife. 2017 Mar 27;6:e24669. doi: 10.7554/eLife.24669.
6
Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution.
Lab Chip. 2014 Aug 7;14(15):2688-97. doi: 10.1039/c4lc00057a. Epub 2014 May 19.
7
Behavioral diversity in microbes and low-dimensional phenotypic spaces.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):14018-23. doi: 10.1073/pnas.1308282110. Epub 2013 Jul 29.
10
Mutations in the flhD gene of Escherichia coli K-12 do not cause the reported effect on cell division.
FEMS Microbiol Lett. 2010 Aug 1;309(1):94-9. doi: 10.1111/j.1574-6968.2010.02021.x. Epub 2010 May 20.

本文引用的文献

1
A macroscopic scale model of bacterial flagellar bundling.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15481-5. doi: 10.1073/pnas.2633596100. Epub 2003 Dec 11.
2
The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8748-51. doi: 10.1073/pnas.1533395100. Epub 2003 Jul 11.
3
On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells.
Biochem Biophys Res Commun. 2003 Jun 6;305(3):534-40. doi: 10.1016/s0006-291x(03)00794-0.
4
Analysis of single-cell differences by use of an on-chip microculture system and optical trapping.
Fresenius J Anal Chem. 2001 Sep;371(2):276-81. doi: 10.1007/s002160100999.
5
Motility and chemotaxis of filamentous cells of Escherichia coli.
J Bacteriol. 2000 Aug;182(15):4337-42. doi: 10.1128/JB.182.15.4337-4342.2000.
6
Bacterial flagellation and cell division.
Genes Cells. 1998 Oct;3(10):625-34. doi: 10.1046/j.1365-2443.1998.00219.x.
7
Response regulator output in bacterial chemotaxis.
EMBO J. 1998 Aug 3;17(15):4238-48. doi: 10.1093/emboj/17.15.4238.
8
Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.
Biophys J. 1995 Nov;69(5):2154-62. doi: 10.1016/S0006-3495(95)80089-5.
9
A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division.
J Bacteriol. 1996 Feb;178(3):668-74. doi: 10.1128/jb.178.3.668-674.1996.
10
Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth.
J Bacteriol. 1993 Oct;175(19):6238-44. doi: 10.1128/jb.175.19.6238-6244.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验