Suppr超能文献

生长板软骨中的溶质转运:体外和体内研究

Solute transport in growth plate cartilage: in vitro and in vivo.

作者信息

Williams Rebecca M, Zipfel Warren R, Tinsley Michelle L, Farnum Cornelia E

机构信息

Applied and Engineering Physics, Cornell University, Ithaca, New York, USA.

出版信息

Biophys J. 2007 Aug 1;93(3):1039-50. doi: 10.1529/biophysj.106.097675. Epub 2007 May 11.

Abstract

Bone elongation originates from cartilaginous discs (growth plates) at both ends of a growing bone. Here chondrocytes proliferate and subsequently enlarge (hypertrophy), laying down a matrix that serves as the scaffolding for subsequent bone matrix deposition. Because cartilage is generally avascular, all nutrients, oxygen, signaling molecules, and waste must be transported relatively long distances through the tissue for it to survive and function. Here we examine the transport properties of growth plate cartilage. Ex vivo, fluorescence photobleaching recovery methods are used in tissue explants. In vivo, multiphoton microscopy is used to image through an intact perichondrium and into the cartilage of anesthetized mice. Systemically introduced fluorescent tracers are monitored directly as they move from the vasculature into the cartilage. We demonstrate the existence of a relatively permissive region at the midplane of the growth plate, where chondrocytes transition from late proliferative to early hypertrophic stages and where paracrine communication is known to occur between chondrocytes and cells in the surrounding perichondrium. Transport in the living mouse is also significantly affected by fluid flow from the two chondro-osseus junctions, presumably resulting from a pressure difference between the bone vasculature and the cartilage.

摘要

骨延长起源于正在生长的骨骼两端的软骨盘(生长板)。在此,软骨细胞增殖并随后增大(肥大),形成一种基质,作为后续骨基质沉积的支架。由于软骨通常无血管,所有营养物质、氧气、信号分子和废物都必须在组织中运输相对较长的距离,才能使其存活和发挥功能。在此,我们研究生长板软骨的运输特性。在体外,荧光光漂白恢复方法用于组织外植体。在体内,多光子显微镜用于透过完整的软骨膜成像并进入麻醉小鼠的软骨。当全身引入的荧光示踪剂从脉管系统进入软骨时,直接对其进行监测。我们证明在生长板中平面存在一个相对宽松的区域,此处软骨细胞从晚期增殖阶段过渡到早期肥大阶段,并且已知软骨细胞与周围软骨膜中的细胞之间会发生旁分泌通讯。活体小鼠中的运输也受到来自两个软骨 - 骨连接部位的流体流动的显著影响,这可能是由于骨脉管系统和软骨之间的压力差所致。

相似文献

1
Solute transport in growth plate cartilage: in vitro and in vivo.
Biophys J. 2007 Aug 1;93(3):1039-50. doi: 10.1529/biophysj.106.097675. Epub 2007 May 11.
2
Imaging IGF-I uptake in growth plate cartilage using in vivo multiphoton microscopy.
J Appl Physiol (1985). 2017 Nov 1;123(5):1101-1109. doi: 10.1152/japplphysiol.00645.2017. Epub 2017 Aug 10.
3
Temperature alters solute transport in growth plate cartilage measured by in vivo multiphoton microscopy.
J Appl Physiol (1985). 2009 Jun;106(6):2016-25. doi: 10.1152/japplphysiol.00295.2009. Epub 2009 Apr 16.
6
Fate of growth plate hypertrophic chondrocytes: death or lineage extension?
Dev Growth Differ. 2015 Feb;57(2):179-92. doi: 10.1111/dgd.12203. Epub 2015 Feb 24.
7
The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification.
J Endocrinol. 2011 Nov;211(2):109-21. doi: 10.1530/JOE-11-0048. Epub 2011 Jun 3.
9
Does the epiphyseal cartilage of the long bones have one or two ossification fronts?
Med Hypotheses. 2013 Oct;81(4):695-700. doi: 10.1016/j.mehy.2013.07.029. Epub 2013 Aug 13.

引用本文的文献

1
The Actions of IGF-1 in the Growth Plate and Its Role in Postnatal Bone Elongation.
Curr Osteoporos Rep. 2020 Jun;18(3):210-227. doi: 10.1007/s11914-020-00570-x.
2
Live imaging analysis of the growth plate in a murine long bone explanted culture system.
Sci Rep. 2018 Jul 9;8(1):10332. doi: 10.1038/s41598-018-28742-x.
3
Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries.
Tissue Eng Part B Rev. 2018 Apr;24(2):85-97. doi: 10.1089/ten.TEB.2017.0274. Epub 2017 Sep 28.
4
Imaging IGF-I uptake in growth plate cartilage using in vivo multiphoton microscopy.
J Appl Physiol (1985). 2017 Nov 1;123(5):1101-1109. doi: 10.1152/japplphysiol.00645.2017. Epub 2017 Aug 10.
7
High-Resolution Methods for Diagnosing Cartilage Damage In Vivo.
Cartilage. 2016 Jan;7(1):39-51. doi: 10.1177/1947603515602307.
8
Comparison of Three Methods to Quantify Repair Cartilage Collagen Orientation.
Cartilage. 2013 Apr;4(2):111-20. doi: 10.1177/1947603512461440.
9
In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment.
Physiology (Bethesda). 2015 Jan;30(1):40-9. doi: 10.1152/physiol.00019.2014.
10
Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging.
J Appl Physiol (1985). 2014 Feb 15;116(4):425-38. doi: 10.1152/japplphysiol.01212.2013. Epub 2013 Dec 26.

本文引用的文献

1
An intracrine view of angiogenesis.
Bioessays. 2006 Sep;28(9):943-53. doi: 10.1002/bies.20459.
2
VEGF receptor signalling - in control of vascular function.
Nat Rev Mol Cell Biol. 2006 May;7(5):359-71. doi: 10.1038/nrm1911.
3
Nutrient supply and intervertebral disc metabolism.
J Bone Joint Surg Am. 2006 Apr;88 Suppl 2:30-5. doi: 10.2106/JBJS.E.01290.
5
Hypoxia and HIF-1 alpha in chondrogenesis.
Semin Cell Dev Biol. 2005 Aug-Oct;16(4-5):539-46. doi: 10.1016/j.semcdb.2005.03.003. Epub 2005 Apr 22.
6
Formation of the BMP activity gradient in the Drosophila embryo.
Dev Cell. 2005 Jun;8(6):915-24. doi: 10.1016/j.devcel.2005.04.009.
8
Determining diffusion coefficients in inhomogeneous tissues using fluorescence recovery after photobleaching.
Biophys J. 2005 Aug;89(2):1302-7. doi: 10.1529/biophysj.104.053652. Epub 2005 May 13.
10
Molecular mechanisms of endochondral bone development.
Biochem Biophys Res Commun. 2005 Mar 18;328(3):658-65. doi: 10.1016/j.bbrc.2004.11.068.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验