Suppr超能文献

利用光漂白后荧光恢复技术测定非均匀组织中的扩散系数。

Determining diffusion coefficients in inhomogeneous tissues using fluorescence recovery after photobleaching.

作者信息

Sniekers Y H, van Donkelaar C C

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.

出版信息

Biophys J. 2005 Aug;89(2):1302-7. doi: 10.1529/biophysj.104.053652. Epub 2005 May 13.

Abstract

Diffusion plays an important role in the transport of nutrients and signaling molecules in cartilaginous tissues. Diffusion coefficients can be measured by fluorescence recovery after photobleaching (FRAP). Available methods to analyze FRAP data, however, assume homogeneity in the environment of the bleached area and neglect geometrical restrictions to diffusion. Hence, diffusion coefficients in inhomogeneous materials, such as most biological tissues, cannot be assessed accurately. In this study, a new method for analyzing data from FRAP measurements has been developed, which is applicable to inhomogeneous tissues. It is based on a fitting procedure of the intensity recovery after photobleaching with a two-dimensional finite element analysis, which includes Fick's law for diffusion. The finite element analysis can account for distinctive diffusivity in predefined zones, which allows determining diffusion coefficients in inhomogeneous samples. The method is validated theoretically and experimentally in both homogeneous and inhomogeneous tissues and subsequently applied to the proliferation zone of the growth plate. Finally, the importance of accounting for inhomogeneities, for appropriate assessment of diffusivity in inhomogeneous tissues, is illustrated.

摘要

扩散在软骨组织中营养物质和信号分子的运输过程中起着重要作用。扩散系数可通过光漂白后荧光恢复(FRAP)来测量。然而,现有的分析FRAP数据的方法假定漂白区域环境是均匀的,并且忽略了扩散的几何限制。因此,对于非均匀材料(如大多数生物组织)中的扩散系数,无法进行准确评估。在本研究中,开发了一种新的分析FRAP测量数据的方法,该方法适用于非均匀组织。它基于用二维有限元分析对光漂白后强度恢复进行拟合的过程,其中包括扩散的菲克定律。有限元分析可以考虑预定义区域中独特的扩散率,这使得能够确定非均匀样品中的扩散系数。该方法在均匀和非均匀组织中均经过理论和实验验证,随后应用于生长板的增殖区。最后,说明了考虑非均匀性对于准确评估非均匀组织中扩散率的重要性。

相似文献

1
Determining diffusion coefficients in inhomogeneous tissues using fluorescence recovery after photobleaching.
Biophys J. 2005 Aug;89(2):1302-7. doi: 10.1529/biophysj.104.053652. Epub 2005 May 13.
2
Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope.
Biophys J. 2003 Oct;85(4):2240-52. doi: 10.1016/S0006-3495(03)74649-9.
3
Fluorescence recovery after photobleaching: direct measurement of diffusion anisotropy.
Biomech Model Mechanobiol. 2020 Dec;19(6):2397-2412. doi: 10.1007/s10237-020-01346-z. Epub 2020 Jun 19.
4
Optimizing detection of tissue anisotropy by fluorescence recovery after photobleaching.
Bull Math Biol. 2006 Nov;68(8):1873-91. doi: 10.1007/s11538-006-9074-z. Epub 2006 Jul 20.
5
Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique.
Ann Biomed Eng. 2009 Apr;37(4):813-23. doi: 10.1007/s10439-009-9655-8. Epub 2009 Feb 18.
6
Cross-encoded magnetic resonance imaging in inhomogeneous fields.
J Magn Reson. 2009 Dec;201(2):199-204. doi: 10.1016/j.jmr.2009.09.008. Epub 2009 Sep 11.
7
Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples.
Biophys J. 2007 Mar 15;92(6):2172-83. doi: 10.1529/biophysj.106.099838. Epub 2007 Jan 5.
8
FRAP Analysis of Extracellular Diffusion in Zebrafish Embryos.
Methods Mol Biol. 2018;1863:107-124. doi: 10.1007/978-1-4939-8772-6_6.
10
Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique.
Ann Biomed Eng. 2007 Oct;35(10):1739-48. doi: 10.1007/s10439-007-9346-2. Epub 2007 Jun 29.

引用本文的文献

1
Cellular optical imaging techniques: a dynamic advancing frontier.
Sci China Life Sci. 2025 Jul 16. doi: 10.1007/s11427-024-2916-5.
2
Diffusion kinetics and perfusion times in tissue models obtained by bioorthogonal Raman -spectroscopy.
Biophys Rep (N Y). 2024 Mar 5;4(2):100150. doi: 10.1016/j.bpr.2024.100150. eCollection 2024 Jun 12.
4
Imaging-guided bioreactor for de-epithelialization and long-term cultivation of rat trachea.
Lab Chip. 2022 Mar 1;22(5):1018-1031. doi: 10.1039/d1lc01105g.
5
Computational Simulation of Exosome Transport in Tumor Microenvironment.
Front Med (Lausanne). 2021 Apr 13;8:643793. doi: 10.3389/fmed.2021.643793. eCollection 2021.
6
Targeted fluorescence lifetime probes reveal responsive organelle viscosity and membrane fluidity.
PLoS One. 2019 Feb 14;14(2):e0211165. doi: 10.1371/journal.pone.0211165. eCollection 2019.
7
Characterization of Cell Boundary and Confocal Effects Improves Quantitative FRAP Analysis.
Biophys J. 2018 Mar 13;114(5):1153-1164. doi: 10.1016/j.bpj.2018.01.013.
8
Single-cell imaging of mechanotransduction in endothelial cells.
Prog Mol Biol Transl Sci. 2014;126:25-51. doi: 10.1016/B978-0-12-394624-9.00002-6.
9
Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs.
J Biomech. 2014 Jun 27;47(9):2149-56. doi: 10.1016/j.jbiomech.2013.09.025. Epub 2013 Oct 8.
10
Photothermal bleaching in time-lapse photoacoustic microscopy.
J Biophotonics. 2013 Jun;6(6-7):543-8. doi: 10.1002/jbio.201200184. Epub 2012 Nov 26.

本文引用的文献

1
Matrix remodeling during endochondral ossification.
Trends Cell Biol. 2004 Feb;14(2):86-93. doi: 10.1016/j.tcb.2003.12.003.
2
Diffusion and partition of solutes in cartilage under static load.
Biophys Chem. 2003 Nov 1;106(2):125-46. doi: 10.1016/s0301-4622(03)00157-1.
3
Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope.
Biophys J. 2003 Oct;85(4):2240-52. doi: 10.1016/S0006-3495(03)74649-9.
5
Developmental regulation of the growth plate.
Nature. 2003 May 15;423(6937):332-6. doi: 10.1038/nature01657.
6
Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins.
Methods. 2003 Jan;29(1):14-28. doi: 10.1016/s1046-2023(02)00288-8.
7
Preservation and analysis of nonequilibrium solute concentration distributions within mechanically compressed cartilage explants.
J Biochem Biophys Methods. 2002 Jul 31;52(2):83-95. doi: 10.1016/s0165-022x(02)00051-9.
9
Use of holographic laser interferometry to study the diffusion of polymers in gels.
Biotechnol Bioeng. 2000 Sep 20;69(6):654-63. doi: 10.1002/1097-0290(20000920)69:6<654::aid-bit10>3.0.co;2-n.
10
Dynamics and retention of misfolded proteins in native ER membranes.
Nat Cell Biol. 2000 May;2(5):288-95. doi: 10.1038/35010558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验