Dimopoulos Savas, Graham Peter W, Hogan Jason M, Kasevich Mark A
Department of Physics, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2007 Mar 16;98(11):111102. doi: 10.1103/PhysRevLett.98.111102. Epub 2007 Mar 15.
The unprecedented precision of atom interferometry will soon lead to laboratory tests of general relativity to levels that will rival or exceed those reached by astrophysical observations. We propose such an experiment that will initially test the equivalence principle to 1 part in 10(15) (300 times better than the current limit), and 1 part in 10(17) in the future. It will also probe general relativistic effects - such as the nonlinear three-graviton coupling, the gravity of an atom's kinetic energy, and the falling of light - to several decimals. In contrast with astrophysical observations, laboratory tests can isolate these effects via their different functional dependence on experimental variables.
原子干涉测量前所未有的精度很快将使广义相对论的实验室测试达到可与天体物理观测相媲美或超越其水平。我们提出这样一项实验,它最初将把等效原理测试到10的15次方分之一的精度(比当前极限好300倍),未来还能达到10的17次方分之一的精度。它还将对广义相对论效应进行精确测量,比如非线性三引力子耦合、原子动能的引力以及光的下落等,精确到小数点后几位。与天体物理观测不同,实验室测试可以通过这些效应与实验变量的不同函数依赖关系来分离它们。