Suppr超能文献

运用基于地理信息系统的多标准分析方法构建社会经济剥夺指数。

Using GIS-based methods of multicriteria analysis to construct socio-economic deprivation indices.

作者信息

Bell Nathaniel, Schuurman Nadine, Hayes Michael V

机构信息

Department of Geography, Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

Int J Health Geogr. 2007 May 14;6:17. doi: 10.1186/1476-072X-6-17.

Abstract

BACKGROUND

Over the past several decades researchers have produced substantial evidence of a social gradient in a variety of health outcomes, rising from systematic differences in income, education, employment conditions, and family dynamics within the population. Social gradients in health are measured using deprivation indices, which are typically constructed from aggregated socio-economic data taken from the national census--a technique which dates back at least until the early 1970's. The primary method of index construction over the last decade has been a Principal Component Analysis. Seldom are the indices constructed from survey-based data sources due to the inherent difficulty in validating the subjectivity of the response scores. We argue that this very subjectivity can uncover spatial distributions of local health outcomes. Moreover, indication of neighbourhood socio-economic status may go underrepresented when weighted without expert opinion. In this paper we propose the use of geographic information science (GIS) for constructing the index. We employ a GIS-based Order Weighted Average (OWA) Multicriteria Analysis (MCA) as a technique to validate deprivation indices that are constructed using more qualitative data sources. Both OWA and traditional MCA are well known and used methodologies in spatial analysis but have had little application in social epidemiology.

RESULTS

A survey of British Columbia's Medical Health Officers (MHOs) was used to populate the MCA-based index. Seven variables were selected and weighted based on the survey results. OWA variable weights assign both local and global weights to the index variables using a sliding scale, producing a range of variable scenarios. The local weights also provide leverage for controlling the level of uncertainty in the MHO response scores. This is distinct from traditional deprivation indices in that the weighting is simultaneously dictated by the original respondent scores and the value of the variables in the dataset.

CONCLUSION

OWA-based MCA is a sensitive instrument that permits incorporation of expert opinion in quantifying socio-economic gradients in health status. OWA applies both subjective and objective weights to the index variables, thus providing a more rational means of incorporating survey results into spatial analysis.

摘要

背景

在过去几十年中,研究人员已得出大量证据,证明在各种健康结果中存在社会梯度,这源于人群中收入、教育、就业条件和家庭动态方面的系统性差异。健康方面的社会梯度是通过贫困指数来衡量的,这些指数通常由从全国人口普查中获取的综合社会经济数据构建而成——这一技术至少可追溯到20世纪70年代初。过去十年中指数构建的主要方法是主成分分析。由于在验证回答分数的主观性方面存在固有困难,很少从基于调查的数据源构建指数。我们认为,正是这种主观性能够揭示当地健康结果的空间分布。此外,在没有专家意见加权的情况下,邻里社会经济地位的指标可能未得到充分体现。在本文中,我们提议使用地理信息科学(GIS)来构建指数。我们采用基于GIS的有序加权平均(OWA)多标准分析(MCA)作为一种技术,来验证使用更多定性数据源构建的贫困指数。OWA和传统MCA都是空间分析中广为人知且常用的方法,但在社会流行病学中应用较少。

结果

对不列颠哥伦比亚省的医疗卫生官员(MHOs)进行的一项调查被用于填充基于MCA的指数。根据调查结果选择了七个变量并进行加权。OWA变量权重使用滑动标度为指数变量分配局部权重和全局权重,产生一系列变量情景。局部权重还为控制MHO回答分数中的不确定性水平提供了手段。这与传统贫困指数不同,因为权重同时由原始受访者分数和数据集中变量的值决定。

结论

基于OWA的MCA是一种敏感工具,允许在量化健康状况的社会经济梯度时纳入专家意见。OWA将主观和客观权重应用于指数变量,从而提供了一种将调查结果纳入空间分析的更合理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2300/1885247/432a39e68f4b/1476-072X-6-17-1.jpg

相似文献

引用本文的文献

1
Location of Terminal Care in Pulmonary Hypertension.肺动脉高压终末期治疗的位置
CJC Open. 2025 Apr 15;7(6):832-839. doi: 10.1016/j.cjco.2025.03.026. eCollection 2025 Jun.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验