Suppr超能文献

一种支持健康不平等分析的多标准空间剥夺指数。

A multi-criteria spatial deprivation index to support health inequality analyses.

作者信息

Cabrera-Barona Pablo, Murphy Thomas, Kienberger Stefan, Blaschke Thomas

机构信息

Interfaculty Department of Geoinformatics - Z_GIS, University of Salzburg, Schillerstraße 30, 5020, Salzburg, Austria.

出版信息

Int J Health Geogr. 2015 Mar 20;14:11. doi: 10.1186/s12942-015-0004-x.

Abstract

BACKGROUND

Deprivation indices are useful measures to analyze health inequalities. There are several methods to construct these indices, however, few studies have used Geographic Information Systems (GIS) and Multi-Criteria methods to construct a deprivation index. Therefore, this study applies Multi-Criteria Evaluation to calculate weights for the indicators that make up the deprivation index and a GIS-based fuzzy approach to create different scenarios of this index is also implemented.

METHODS

The Analytical Hierarchy Process (AHP) is used to obtain the weights for the indicators of the index. The Ordered Weighted Averaging (OWA) method using linguistic quantifiers is applied in order to create different deprivation scenarios. Geographically Weighted Regression (GWR) and a Moran's I analysis are employed to explore spatial relationships between the different deprivation measures and two health factors: the distance to health services and the percentage of people that have never had a live birth. This last indicator was considered as the dependent variable in the GWR. The case study is Quito City, in Ecuador.

RESULTS

The AHP-based deprivation index show medium and high levels of deprivation (0,511 to 1,000) in specific zones of the study area, even though most of the study area has low values of deprivation. OWA results show deprivation scenarios that can be evaluated considering the different attitudes of decision makers. GWR results indicate that the deprivation index and its OWA scenarios can be considered as local estimators for health related phenomena. Moran's I calculations demonstrate that several deprivation scenarios, in combination with the 'distance to health services' factor, could be explanatory variables to predict the percentage of people that have never had a live birth.

CONCLUSIONS

The AHP-based deprivation index and the OWA deprivation scenarios developed in this study are Multi-Criteria instruments that can support the identification of highly deprived zones and can support health inequalities analysis in combination with different health factors. The methodology described in this study can be applied in other regions of the world to develop spatial deprivation indices based on Multi-Criteria analysis.

摘要

背景

贫困指数是分析健康不平等的有用指标。构建这些指数有多种方法,然而,很少有研究使用地理信息系统(GIS)和多标准方法来构建贫困指数。因此,本研究应用多标准评估来计算构成贫困指数的指标权重,并实施基于GIS的模糊方法来创建该指数的不同情景。

方法

层次分析法(AHP)用于获取指数指标的权重。应用使用语言量词的有序加权平均(OWA)方法来创建不同的贫困情景。地理加权回归(GWR)和莫兰指数分析用于探索不同贫困指标与两个健康因素之间的空间关系:到医疗服务的距离和从未生育过的人口百分比。最后一个指标被视为GWR中的因变量。案例研究地点是厄瓜多尔的基多市。

结果

基于AHP的贫困指数显示,研究区域的特定区域存在中度和高度贫困水平(0.511至1.000),尽管研究区域的大部分地区贫困值较低。OWA结果显示了可以根据决策者的不同态度进行评估的贫困情景。GWR结果表明,贫困指数及其OWA情景可被视为与健康相关现象的局部估计量。莫兰指数计算表明,几种贫困情景与“到医疗服务的距离”因素相结合,可能是预测从未生育过的人口百分比的解释变量。

结论

本研究中开发的基于AHP的贫困指数和OWA贫困情景是多标准工具,可以支持识别高度贫困地区,并可以结合不同的健康因素支持健康不平等分析。本研究中描述的方法可以应用于世界其他地区,以基于多标准分析开发空间贫困指数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验