Buhmann Sonja, Herzog Peter, Liang Jin, Wolf Mathias, Salganicoff Marcos, Kirchhoff Chlodwig, Reiser Maximilian, Becker Christoph H
Institute of Clinical Radiology, University Hospital Munich, Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany.
Acad Radiol. 2007 Jun;14(6):651-8. doi: 10.1016/j.acra.2007.02.007.
To evaluate the performance of a prototype computer-aided diagnosis (CAD) tool using artificial intelligence techniques for the detection of pulmonary embolism (PE) and the possible benefit for general radiologists.
Forty multidetector row computed tomography datasets (16/64- channel scanner) using 100 kVp, 100 mAs effective/slice, and 1-mm axial reformats in a low-frequency reconstruction kernel were evaluated. A total of 80 mL iodinated contrast material was injected at a flow rate of 5 mL/seconds. Primarily, six general radiologists marked any PE using a commercially available lung evaluation software with simultaneous, automatic processing by CAD in the background. An expert panel consisting of two chest radiologists analyzed all PE marks from the readers and CAD, also searching for additional finding primarily missed by both, forming the ground truth.
The ground truth consisted of 212 emboli. Of these, 65 (31%) were centrally and 147 (69%) were peripherally located. The readers detected 157/212 emboli (74%) leading to a sensitivity of 97% (63/65) for central and 70% (103/147) for peripheral emboli with 9 false-positive findings. CAD detected 168/212 emboli (79%), reaching a sensitivity of 74% for central (48/65) and 82%(120/147) for peripheral emboli. A total of 154 CAD candidates were considered as false positives, yielding an average of 3.85 false positives/case.
The CAD software showed a sensitivity comparable to that of the general radiologists, but with more false positives. CAD detection of findings incremental to the radiologists suggests benefit when used as a second reader. Future versions of CAD have the potential to further increase clinical benefit by improving sensitivity and reducing false marks.
评估一种使用人工智能技术检测肺栓塞(PE)的原型计算机辅助诊断(CAD)工具的性能以及对普通放射科医生可能带来的益处。
对40个多排螺旋CT数据集(16/64排探测器扫描仪)进行评估,扫描参数为100 kVp、每层面有效管电流100 mAs以及1毫米轴向重建层厚,采用低频重建内核。以5毫升/秒的流速注入总量80毫升的碘化对比剂。首先,6名普通放射科医生使用一款商用肺部评估软件标记所有PE,同时CAD在后台进行自动处理。由两名胸部放射科医生组成的专家小组分析了来自阅片者和CAD的所有PE标记,还寻找两者均主要漏诊的其他发现,以此形成金标准。
金标准包含212个栓子。其中,65个(31%)位于中央,147个(69%)位于外周。阅片者检测出157/212个栓子(74%),中央栓子的敏感性为97%(63/65),外周栓子的敏感性为70%(103/147),有9例假阳性结果。CAD检测出168/212个栓子(79%),中央栓子的敏感性为74%(48/65),外周栓子的敏感性为82%(120/147)。共有154个CAD候选结果被视为假阳性,平均每个病例有3.85例假阳性。
CAD软件显示出与普通放射科医生相当的敏感性,但假阳性更多。CAD对放射科医生额外发现的检测表明,作为第二阅片者使用时具有益处。CAD的未来版本有可能通过提高敏感性和减少假标记进一步增加临床益处。