Borger Simon, Liebermeister Wolfram, Klipp Edda
Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
Genome Inform. 2006;17(1):80-7.
Values of enzyme kinetic parameters are a key requisite for the kinetic modelling of biochemical systems. For most kinetic parameters, however, not even an order of magnitude is known, so the estimation of model parameters from experimental data remains a major task in systems biology. We propose a statistical approach to infer values for kinetic parameters across species and enzymes making use of parameter values that have been measured under various conditions and that are nowadays stored in databases. We fit the data by a statistical regression model in which the substrate, the combination enzyme-substrate and the combination organism-substrate have a linear effect on the logarithmic parameter value. As a result, we obtain predictions and error ranges for unknown enzyme parameters. We apply our method to decadic logarithmic Michaelis-Menten constants from the BRENDA database and confirm the results with leave-one-out crossvalidation, in which we mask one value at a time and predict it from the remaining data. For a set of 8 metabolites we obtain a standard prediction error of 1.01 for the deviation of the predicted values from the true values, while the standard deviation of the experimental values is 1.16. The method is applicable to other types of kinetic parameters for which many experimental data are available.
酶动力学参数的值是生化系统动力学建模的关键必要条件。然而,对于大多数动力学参数,甚至连一个数量级都不清楚,因此从实验数据估计模型参数仍然是系统生物学中的一项主要任务。我们提出了一种统计方法,利用在各种条件下测量并存储在数据库中的参数值,推断跨物种和酶的动力学参数值。我们通过一个统计回归模型对数据进行拟合,其中底物、酶 - 底物组合以及生物体 - 底物组合对对数参数值具有线性影响。结果,我们获得了未知酶参数的预测值和误差范围。我们将我们的方法应用于来自BRENDA数据库的常用对数米氏常数,并通过留一法交叉验证来确认结果,在该验证中我们每次掩盖一个值并根据其余数据对其进行预测。对于一组8种代谢物,我们得到预测值与真实值偏差的标准预测误差为1.01,而实验值的标准差为1.16。该方法适用于有许多实验数据可用的其他类型的动力学参数。