Institute for Computer Science and Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
PLoS Biol. 2021 Oct 19;19(10):e3001402. doi: 10.1371/journal.pbio.3001402. eCollection 2021 Oct.
The Michaelis constant KM describes the affinity of an enzyme for a specific substrate and is a central parameter in studies of enzyme kinetics and cellular physiology. As measurements of KM are often difficult and time-consuming, experimental estimates exist for only a minority of enzyme-substrate combinations even in model organisms. Here, we build and train an organism-independent model that successfully predicts KM values for natural enzyme-substrate combinations using machine and deep learning methods. Predictions are based on a task-specific molecular fingerprint of the substrate, generated using a graph neural network, and on a deep numerical representation of the enzyme's amino acid sequence. We provide genome-scale KM predictions for 47 model organisms, which can be used to approximately relate metabolite concentrations to cellular physiology and to aid in the parameterization of kinetic models of cellular metabolism.
米氏常数 KM 描述了酶对特定底物的亲和力,是酶动力学和细胞生理学研究的一个核心参数。由于 KM 的测量往往既困难又耗时,即使在模式生物中,也只有少数酶-底物组合有实验估计值。在这里,我们构建并训练了一种与生物体无关的模型,该模型使用机器学习和深度学习方法成功地预测了天然酶-底物组合的 KM 值。预测是基于使用图神经网络生成的底物的特定于任务的分子指纹以及酶的氨基酸序列的深度数值表示。我们为 47 个模式生物提供了基因组规模的 KM 预测,这些预测可用于将代谢物浓度近似与细胞生理学相关联,并有助于细胞代谢动力学模型的参数化。