Thakrar Bharat T, Grundschober Sabine Borel, Doessegger Lucette
Drug Safety Risk Management, F. Hoffman-La Roche Ltd, Basel, Switzerland.
Br J Clin Pharmacol. 2007 Oct;64(4):489-95. doi: 10.1111/j.1365-2125.2007.02900.x. Epub 2007 May 15.
The spontaneous reports database is widely used for detecting signals of ADRs. We have extended the methodology to include the detection of signals of ADRs that are associated with drug-drug interactions (DDI). In particular, we have investigated two different statistical assumptions for detecting signals of DDI.
Using the FDA's spontaneous reports database, we investigated two models, a multiplicative and an additive model, to detect signals of DDI. We applied the models to four known DDIs (methotrexate-diclofenac and bone marrow depression, simvastatin-ciclosporin and myopathy, ketoconazole-terfenadine and torsades de pointes, and cisapride-erythromycin and torsades de pointes) and to four drug-event combinations where there is currently no evidence of a DDI (fexofenadine-ketoconazole and torsades de pointes, methotrexade-rofecoxib and bone marrow depression, fluvastatin-ciclosporin and myopathy, and cisapride-azithromycine and torsade de pointes) and estimated the measure of interaction on the two scales.
The additive model correctly identified all four known DDIs by giving a statistically significant (P < 0.05) positive measure of interaction. The multiplicative model identified the first two of the known DDIs as having a statistically significant or borderline significant (P < 0.1) positive measure of interaction term, gave a nonsignificant positive trend for the third interaction (P = 0.27), and a negative trend for the last interaction. Both models correctly identified the four known non interactions by estimating a negative measure of interaction.
The spontaneous reports database is a valuable resource for detecting signals of DDIs. In particular, the additive model is more sensitive in detecting such signals. The multiplicative model may further help qualify the strength of the signal detected by the additive model.
自发报告数据库广泛用于检测药品不良反应(ADR)信号。我们扩展了该方法,以纳入对与药物相互作用(DDI)相关的ADR信号的检测。特别是,我们研究了两种不同的统计假设来检测DDI信号。
使用美国食品药品监督管理局(FDA)的自发报告数据库,我们研究了两种模型,即乘法模型和加法模型,以检测DDI信号。我们将这些模型应用于四种已知的DDI(甲氨蝶呤 - 双氯芬酸与骨髓抑制、辛伐他汀 - 环孢素与肌病、酮康唑 - 特非那定与尖端扭转型室性心动过速,以及西沙必利 - 红霉素与尖端扭转型室性心动过速)和四种目前尚无DDI证据的药物 - 事件组合(非索非那定 - 酮康唑与尖端扭转型室性心动过速、甲氨蝶呤 - 罗非昔布与骨髓抑制、氟伐他汀 - 环孢素与肌病,以及西沙必利 - 阿奇霉素与尖端扭转型室性心动过速),并在两个尺度上估计相互作用的度量。
加法模型通过给出具有统计学显著性(P < 0.05)的正相互作用度量,正确识别了所有四种已知的DDI。乘法模型将前两种已知的DDI识别为具有统计学显著性或临界显著性(P < 0.1)的正相互作用项度量,对第三种相互作用给出了无显著性的正趋势(P = 0.27),对最后一种相互作用给出了负趋势。两种模型通过估计负的相互作用度量,都正确识别了四种已知的非相互作用情况。
自发报告数据库是检测DDI信号的宝贵资源。特别是,加法模型在检测此类信号时更敏感。乘法模型可能进一步有助于确定加法模型检测到的信号强度。