Suppr超能文献

基于模拟的药物相互作用信号检测方法比较。

A simulation-based comparison of drug-drug interaction signal detection methods.

机构信息

Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea.

出版信息

PLoS One. 2024 Apr 17;19(4):e0300268. doi: 10.1371/journal.pone.0300268. eCollection 2024.

Abstract

Several statistical methods have been proposed to detect adverse drug reactions induced by taking two drugs together. These suspected adverse drug reactions can be discovered through post-market drug safety surveillance, which mainly relies on spontaneous reporting system database. Most previous studies have applied statistical models to real world data, but it is not clear which method outperforms the others. We aimed to assess the performance of various detection methods by implementing simulations under various conditions. We reviewed proposed approaches to detect signals indicating drug-drug interactions (DDIs) including the Ω shrinkage measure, the chi-square statistic, the proportional reporting ratio, the concomitant signal score, the additive model and the multiplicative model. Under various scenarios, we conducted a simulation study to examine the performances of the methods. We also applied the methods to Korea Adverse Event Reporting System (KAERS) data. Of the six methods considered in the simulation study, the Ω shrinkage measure and the chi-square statistic with threshold = 2 had higher sensitivity for detecting the true signals than the other methods in most scenarios while controlling the false positive rate below 0.05. When applied to the KAERS data, the two methods detected one known DDI for QT prolongation and one unknown (suspected) DDI for hyperkalemia. The performance of various signal detection methods for DDI may vary. It is recommended to use several methods together, rather than just one, to make a reasonable decision.

摘要

已经提出了几种统计方法来检测同时服用两种药物引起的不良反应。这些可疑的药物不良反应可以通过上市后药物安全性监测来发现,主要依赖于自发报告系统数据库。大多数先前的研究已经将统计模型应用于真实世界的数据,但不清楚哪种方法更优。我们旨在通过在各种条件下实施模拟来评估各种检测方法的性能。我们回顾了用于检测药物-药物相互作用(DDI)信号的方法,包括Ω收缩测量、卡方统计、比例报告比、伴随信号评分、加法模型和乘法模型。在各种情况下,我们进行了模拟研究来检验这些方法的性能。我们还将这些方法应用于韩国不良事件报告系统(KAERS)数据。在模拟研究中考虑的六种方法中,在大多数情况下,Ω收缩测量和卡方统计(阈值=2)比其他方法具有更高的灵敏度,可以检测到真实信号,同时将假阳性率控制在 0.05 以下。当应用于 KAERS 数据时,这两种方法检测到一个已知的 QT 延长 DDI 和一个未知(疑似)高钾血症 DDI。DDI 的各种信号检测方法的性能可能有所不同。建议一起使用几种方法,而不是仅仅使用一种方法,以做出合理的决策。

相似文献

1
A simulation-based comparison of drug-drug interaction signal detection methods.
PLoS One. 2024 Apr 17;19(4):e0300268. doi: 10.1371/journal.pone.0300268. eCollection 2024.
4
A Bayesian method to detect drug-drug interaction using external information for spontaneous reporting system.
Stat Med. 2024 Aug 15;43(18):3353-3363. doi: 10.1002/sim.10137. Epub 2024 Jun 5.
7
Utilization of chi-square statistics for screening adverse drug-drug interactions in spontaneous reporting systems.
Eur J Clin Pharmacol. 2017 Jun;73(6):779-786. doi: 10.1007/s00228-017-2233-3. Epub 2017 Mar 9.
8
Data-mining for detecting signals of adverse drug reactions of fluoxetine using the Korea Adverse Event Reporting System (KAERS) database.
Psychiatry Res. 2017 Oct;256:237-242. doi: 10.1016/j.psychres.2017.06.038. Epub 2017 Jun 13.
9
Detecting signals of drug-drug interactions in a spontaneous reports database.
Br J Clin Pharmacol. 2007 Oct;64(4):489-95. doi: 10.1111/j.1365-2125.2007.02900.x. Epub 2007 May 15.
10
Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
BMC Pharmacol Toxicol. 2017 Jun 8;18(1):44. doi: 10.1186/s40360-017-0153-6.

引用本文的文献

1
Remimazolam's clinical application and safety: A signal detection analysis based on FAERS data and literature support.
PLoS One. 2025 Aug 22;20(8):e0330769. doi: 10.1371/journal.pone.0330769. eCollection 2025.

本文引用的文献

1
A reference set of clinically relevant adverse drug-drug interactions.
Sci Data. 2022 Mar 4;9(1):72. doi: 10.1038/s41597-022-01159-y.
6
Review of Statistical Methodologies for Detecting Drug-Drug Interactions Using Spontaneous Reporting Systems.
Front Pharmacol. 2019 Nov 8;10:1319. doi: 10.3389/fphar.2019.01319. eCollection 2019.
7
Three-Component Mixture Model-Based Adverse Drug Event Signal Detection for the Adverse Event Reporting System.
CPT Pharmacometrics Syst Pharmacol. 2018 Aug;7(8):499-506. doi: 10.1002/psp4.12294. Epub 2018 Aug 9.
8
A New Search Method Using Association Rule Mining for Drug-Drug Interaction Based on Spontaneous Report System.
Front Pharmacol. 2018 Mar 9;9:197. doi: 10.3389/fphar.2018.00197. eCollection 2018.
9
What is polypharmacy? A systematic review of definitions.
BMC Geriatr. 2017 Oct 10;17(1):230. doi: 10.1186/s12877-017-0621-2.
10
Utilization of chi-square statistics for screening adverse drug-drug interactions in spontaneous reporting systems.
Eur J Clin Pharmacol. 2017 Jun;73(6):779-786. doi: 10.1007/s00228-017-2233-3. Epub 2017 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验