Suppr超能文献

Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation.

作者信息

Sevick E M, Chance B, Leigh J, Nioka S, Maris M

机构信息

Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104-6089.

出版信息

Anal Biochem. 1991 Jun;195(2):330-51. doi: 10.1016/0003-2697(91)90339-u.

Abstract

The recent development of near-infrared time- and frequency-resolved tissue spectroscopy techniques to probe tissue oxygenation and tissue oxygenation kinetics has led to the need for further quantitation of spectroscopic signals. In this paper, we briefly review the theory of light transport in strongly scattering media as monitored in the time and frequency domains, and use this theory to develop algorithms for quantitation of hemoglobin saturation from the photon decay rate (delta log R/delta t) obtained using time-resolved spectroscopy, and from the phase-shift (theta) obtained from frequency-resolved, phase-modulated spectroscopy. To test the relationship of these optical parameters, we studied the behavior of delta log R/delta t and theta as a function of oxygenation in model systems which mimicked the optical properties of tissue. Our results show that deoxygenation at varying hemoglobin concentrations can be monitored with the change in the photon decay kinetics, delta delta log R/delta t in the time-resolved measurements, and with the change in phase-shift, delta theta, in the frequency-resolved technique. Optical spectra of the adult human brain obtained with these two techniques show similar characteristics identified from the model systems.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验