Suppr超能文献

亚基解离和扩散决定视杆和视锥转导素的亚细胞定位。

Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins.

作者信息

Rosenzweig Derek H, Nair K Saidas, Wei Junhua, Wang Qiang, Garwin Greg, Saari John C, Chen Ching-Kang, Smrcka Alan V, Swaroop Anand, Lem Janis, Hurley James B, Slepak Vladlen Z

机构信息

Department of Molecular and Cellular Pharmacology and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.

出版信息

J Neurosci. 2007 May 16;27(20):5484-94. doi: 10.1523/JNEUROSCI.1421-07.2007.

Abstract

Activation of rod photoreceptors by light induces a massive redistribution of the heterotrimeric G-protein transducin. In darkness, transducin is sequestered within the membrane-enriched outer segments of the rod cell. In light, it disperses throughout the entire neuron. We show here that redistribution of rod transducin by light requires activation, but it does not require ATP. This observation rules out participation of molecular motors in the redistribution process. In contrast to the light-stimulated redistribution of rod transducin in rods, cone transducin in cones does not redistribute during activation. Remarkably, when cone transducin is expressed in rods, it does undergo light-stimulated redistribution. We show here that the difference in subcellular localization of activated rod and cone G-proteins correlates with their affinity for membranes. Activated rod transducin releases from membranes, whereas activated cone transducin remains bound to membranes. A synthetic peptide that dissociates G-protein complexes independently of activation facilitates dispersion of both rod and cone transducins within the cells. This peptide also facilitates detachment of both G-proteins from the membranes. Together, these results show that it is the dissociation state of transducin that determines its localization in photoreceptors. When rod transducin is stimulated, its subunits dissociate, leave outer segment membranes, and equilibrate throughout the cell. Cone transducin subunits do not dissociate during activation and remain sequestered within the outer segment. These findings indicate that the subunits of some heterotrimeric G-proteins remain associated during activation in their native environments.

摘要

光激活视杆光感受器会诱导异源三聚体G蛋白转导素发生大规模重新分布。在黑暗中,转导素被隔离在视杆细胞富含膜的外段内。在光照下,它会分散到整个神经元中。我们在此表明,光诱导的视杆转导素重新分布需要激活,但不需要ATP。这一观察结果排除了分子马达参与重新分布过程的可能性。与视杆中光刺激的视杆转导素重新分布不同,视锥中的视锥转导素在激活过程中不会重新分布。值得注意的是,当视锥转导素在视杆中表达时,它确实会发生光刺激的重新分布。我们在此表明,激活的视杆和视锥G蛋白在亚细胞定位上的差异与其对膜的亲和力相关。激活的视杆转导素从膜上释放,而激活的视锥转导素仍与膜结合。一种能独立于激活作用解离G蛋白复合物的合成肽促进了视杆和视锥转导素在细胞内的分散。这种肽还促进了两种G蛋白从膜上的脱离。总之,这些结果表明,转导素的解离状态决定了其在光感受器中的定位。当视杆转导素受到刺激时,其亚基解离,离开外段膜,并在整个细胞内达到平衡。视锥转导素亚基在激活过程中不会解离,仍被隔离在外段内。这些发现表明,一些异源三聚体G蛋白的亚基在其天然环境中的激活过程中仍保持结合状态。

相似文献

1
Subunit dissociation and diffusion determine the subcellular localization of rod and cone transducins.
J Neurosci. 2007 May 16;27(20):5484-94. doi: 10.1523/JNEUROSCI.1421-07.2007.
2
Replacing the rod with the cone transducin subunit decreases sensitivity and accelerates response decay.
J Physiol. 2010 Sep 1;588(Pt 17):3231-41. doi: 10.1113/jphysiol.2010.191221. Epub 2010 Jul 5.
3
Salamander rods and cones contain distinct transducin alpha subunits.
Vis Neurosci. 2000 Nov-Dec;17(6):847-54. doi: 10.1017/s0952523800176047.
4
Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity.
J Biol Chem. 2013 Feb 22;288(8):5257-67. doi: 10.1074/jbc.M112.430058. Epub 2013 Jan 3.
5
A visual pigment expressed in both rod and cone photoreceptors.
Neuron. 2001 Nov 8;32(3):451-61. doi: 10.1016/s0896-6273(01)00482-2.
6
Light threshold-controlled cone alpha-transducin translocation.
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3350-5. doi: 10.1167/iovs.07-0126.
7
Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse.
J Biol Chem. 2004 Apr 30;279(18):19149-56. doi: 10.1074/jbc.M311058200. Epub 2004 Feb 18.
8
Low activation and fast inactivation of transducin in carp cones.
J Biol Chem. 2012 Nov 30;287(49):41186-94. doi: 10.1074/jbc.M112.403717. Epub 2012 Oct 8.
9
Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.
J Biol Chem. 2015 Apr 10;290(15):9399-411. doi: 10.1074/jbc.M114.634543. Epub 2015 Feb 20.
10
Transducin β-Subunit Can Interact with Multiple G-Protein γ-Subunits to Enable Light Detection by Rod Photoreceptors.
eNeuro. 2018 Jun 11;5(3). doi: 10.1523/ENEURO.0144-18.2018. eCollection 2018 May-Jun.

引用本文的文献

1
Arrestins: A Small Family of Multi-Functional Proteins.
Int J Mol Sci. 2024 Jun 6;25(11):6284. doi: 10.3390/ijms25116284.
2
The ciliary lumen accommodates passive diffusion and vesicle-assisted trafficking in cytoplasm-ciliary transport.
Mol Biol Cell. 2023 May 15;34(6):ar59. doi: 10.1091/mbc.E22-10-0452. Epub 2023 Mar 1.
3
Heterogeneity of G protein activation by the calcium-sensing receptor.
J Mol Endocrinol. 2021 Jun 21;67(2):41-53. doi: 10.1530/JME-21-0058.
4
Biological Role of Arrestin-1 Oligomerization.
J Neurosci. 2020 Oct 14;40(42):8055-8069. doi: 10.1523/JNEUROSCI.0749-20.2020. Epub 2020 Sep 18.
5
Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation.
EMBO J. 2019 Dec 2;38(23):e101409. doi: 10.15252/embj.2018101409. Epub 2019 Nov 7.
6
Farnesylation of the Transducin G Protein Gamma Subunit Is a Prerequisite for Its Ciliary Targeting in Rod Photoreceptors.
Front Mol Neurosci. 2018 Jan 23;11:16. doi: 10.3389/fnmol.2018.00016. eCollection 2018.
7
Separation of photoreceptor cell compartments in mouse retina for protein analysis.
Mol Neurodegener. 2017 Apr 11;12(1):28. doi: 10.1186/s13024-017-0171-2.
8
The GPCR heterotetramer: challenging classical pharmacology.
Trends Pharmacol Sci. 2015 Mar;36(3):145-52. doi: 10.1016/j.tips.2015.01.002. Epub 2015 Feb 18.
9
Autophagy supports survival and phototransduction protein levels in rod photoreceptors.
Cell Death Differ. 2015 Mar;22(3):488-98. doi: 10.1038/cdd.2014.229. Epub 2015 Jan 9.
10
An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier.
J Cell Biol. 2013 Oct 14;203(1):129-47. doi: 10.1083/jcb.201212024. Epub 2013 Oct 7.

本文引用的文献

1
Transducin translocation in rods is triggered by saturation of the GTPase-activating complex.
J Neurosci. 2007 Jan 31;27(5):1151-60. doi: 10.1523/JNEUROSCI.5010-06.2007.
2
Light-driven translocation of signaling proteins in vertebrate photoreceptors.
Trends Cell Biol. 2006 Nov;16(11):560-8. doi: 10.1016/j.tcb.2006.09.001. Epub 2006 Sep 22.
3
AKAP signaling complexes: getting to the heart of the matter.
Trends Mol Med. 2006 Jul;12(7):317-23. doi: 10.1016/j.molmed.2006.05.008. Epub 2006 Jun 30.
4
Differential targeting of Gbetagamma-subunit signaling with small molecules.
Science. 2006 Apr 21;312(5772):443-6. doi: 10.1126/science.1120378.
5
The odyssey of k-ras.
Mol Cell. 2006 Feb 17;21(4):447-9. doi: 10.1016/j.molcel.2006.02.002.
7
A role for cytoskeletal elements in the light-driven translocation of proteins in rod photoreceptors.
Invest Ophthalmol Vis Sci. 2005 Nov;46(11):3988-98. doi: 10.1167/iovs.05-0567.
8
Transducin activation state controls its light-dependent translocation in rod photoreceptors.
J Biol Chem. 2005 Dec 9;280(49):41069-76. doi: 10.1074/jbc.M508849200. Epub 2005 Oct 4.
9
Farnesylation of retinal transducin underlies its translocation during light adaptation.
Neuron. 2005 Aug 18;47(4):529-39. doi: 10.1016/j.neuron.2005.07.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验