Mahon A K, Flynn M G, Iglay H B, Stewart L K, Johnson C A, McFarlin B K, Campbell W W
Department of Foods and Nutrition, Purdue University, 700 West State Street, West Lafayette, IN 47907-2059, USA.
J Nutr Health Aging. 2007 May-Jun;11(3):203-13.
The accurate measurement of body composition changes is important when evaluating the efficacy of medical nutrition therapy and weight management programs, yet is not well documented in older women.
We compared methods of estimating energy-restriction-induced body composition changes in postmenopausal women.
27 women (59 +/- 8 y; BMI 29.0 +/- 2.9 kg/m2; mean +/- SD) completed a 9-wk energy restriction period (5233 kJ/d, (1250 kcal/d)). Changes in % body fat (delta%BF), fat mass (deltaFM), and fatfree mass (deltaFFM) were measured by hydrostatic weighing (HW), air-displacement plethysmography (ADP), dual-energy x-ray absorptiometry (DXA), and deuterium oxide dilution (D2O). The Baumgartner et al. (Am J Clin Nutr 53:1345-1353, 1991) four-compartment (4C) model with body volume from HW was the criterion method. The 4C model with body volume from ADP was also compared. Regression equations were developed based on 4CHW (dependent variable) utilizing results of change (POST-PRE) for each method.
The women lost 6.8 +/- 3.2 kg; 9% of baseline weight. Based on 4CHW, the body composition changes were -2.4 +/- 4.5 delta%BF, -4.7 +/- 3.3 kg deltaFM, and -2.6 +/- 4.4 kg deltaFFM. No differences were detected by ANOVA for delta%BF, deltaFM, and deltaFFM among 4CHW, HW, ADP, DXA, D2O, and 4CADP. Bland-Altman limits of agreement showed differences between methods that ranged from 14.5 to -14.1 delta%BF, 7.8 to -8.1 kg deltaFM, and 7.5 to -8.4 kg deltaFFM for individuals. A bias was shown with 4CADP overestimating delta%BF (1.4 %) and FM (0.6 kg) and underestimating deltaFFM (-1.2 kg) compared to 4CHW. The regression model was acceptable for %BF (4CADP, 2CHW, and 2CD2O); FM and FFM (4CADP, 3CDXA, 2CHW, and 2CD2O), but not for other estimates of %BF, FM, FFM.
These body composition assessment methods may be used interchangeably to quantify changes in % body fat, fat mass, and fat-free mass with weight loss in groups of postmenopausal women. 4CADP overestimates delta%BF and underestimates deltaFFM. When utilizing one of these comparison methods (4CADP, 3CDXA, 2CHW, 2CD2O) to quantify changes in fat mass and fat-free mass for an individual postmenopausal woman, regression equations may be used to relate the data to 4CHW.
在评估医学营养治疗和体重管理计划的疗效时,准确测量身体成分变化很重要,但在老年女性中这方面的记录并不完善。
我们比较了绝经后女性中估计能量限制引起的身体成分变化的方法。
27名女性(59±8岁;体重指数29.0±2.9kg/m²;均值±标准差)完成了为期9周的能量限制期(5233kJ/d,即1250kcal/d)。通过水下称重(HW)、空气置换体积描记法(ADP)、双能X线吸收法(DXA)和氧化氘稀释法(D2O)测量体脂百分比变化(Δ%BF)、脂肪量变化(ΔFM)和去脂体重变化(ΔFFM)。以Baumgartner等人(《美国临床营养学杂志》53:1345 - 1353,1991年)基于水下称重得出的身体体积的四室(4C)模型作为标准方法。还比较了基于空气置换体积描记法得出的身体体积的4C模型。利用每种方法的变化结果(POST - PRE),基于4CHW(因变量)建立回归方程。
这些女性体重减轻了6.8±3.2kg;占基线体重的9%。基于4CHW,身体成分变化为Δ%BF - 2.4±4.5,ΔFM - 4.7±3.3kg,ΔFFM - 2.6±4.4kg。对于4CHW、HW、ADP、DXA、D2O和4CADP之间的Δ%BF、ΔFM和ΔFFM,方差分析未检测到差异。Bland - Altman一致性界限显示,个体的方法间差异范围为Δ%BF从14.5到 - 14.1,ΔFM从7.8到 - 8.1kg,ΔFFM从7.5到 - 8.4kg。与4CHW相比,4CADP显示出偏差,高估了Δ%BF(1.4%)和FM(0.6kg),低估了ΔFFM( - 1.2kg)。回归模型对于%BF(4CADP、2CHW和2CD2O)、FM和FFM(4CADP、3CDXA、2CHW和2CD2O)是可接受的,但对于%BF、FM、FFM的其他估计不可接受。
这些身体成分评估方法可相互替代使用,以量化绝经后女性群体体重减轻时体脂百分比、脂肪量和去脂体重的变化。4CADP高估了Δ%BF且低估了ΔFFM。当使用这些比较方法之一(4CADP、3CDXA、2CHW、2CD2O)来量化个体绝经后女性的脂肪量和去脂体重变化时,可使用回归方程将数据与4CHW相关联。