Suppr超能文献

关于使用分层概率模型来表征和管理风险/安全评估中的不确定性。

On the use of hierarchical probabilistic models for characterizing and managing uncertainty in risk/safety assessment.

作者信息

Kodell Ralph L, Chen James J

机构信息

Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.

出版信息

Risk Anal. 2007 Apr;27(2):433-7. doi: 10.1111/j.1539-6924.2007.00895.x.

Abstract

A general probabilistically-based approach is proposed for both cancer and noncancer risk/safety assessments. The familiar framework of the original ADI/RfD formulation is used, substituting in the numerator a benchmark dose derived from a hierarchical pharmacokinetic/pharmacodynamic model and in the denominator a unitary uncertainty factor derived from a hierarchical animal/average human/sensitive human model. The empirical probability distributions of the numerator and denominator can be combined to produce an empirical human-equivalent distribution for an animal-derived benchmark dose in external-exposure units.

摘要

本文提出了一种基于概率的通用方法,用于癌症和非癌症风险/安全性评估。采用了原始每日允许摄入量/参考剂量(ADI/RfD)公式的常见框架,在分子中代入从分层药代动力学/药效学模型得出的基准剂量,在分母中代入从分层动物/普通人类/敏感人类模型得出的单一不确定性因子。分子和分母的经验概率分布可以合并,以产生外部暴露单位中动物源性基准剂量的经验性人类等效分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验