Suppr超能文献

迈向癌症风险的定量不确定性评估:剂量反应模型中风险的中心估计值和概率分布

Towards quantitative uncertainty assessment for cancer risks: central estimates and probability distributions of risk in dose-response modeling.

作者信息

Kopylev Leonid, Chen Chao, White Paul

机构信息

National Center of Environmental Assessment, U.S. Environmental Protection Agency, USEPA Office of Research and Development, 1200 Pennsylvania Avenue, NW (8623D), Washington, DC 20460, USA.

出版信息

Regul Toxicol Pharmacol. 2007 Dec;49(3):203-7. doi: 10.1016/j.yrtph.2007.08.002. Epub 2007 Aug 24.

Abstract

Regulatory agencies and the scientific community have been engaged in a long-term effort to strengthen health risk assessment procedures. Recently the momentum of this effort has accelerated to increasing biological information for a variety of toxic compounds and emphasis on the policy goal of broader characterization of scientific uncertainty (in contrast to providing only a single risk estimate). For example, the OMB Regulatory Analysis Guidelines [OMB, 2003. Office of Management and Budget. Circular A-4. Available from: http://www.whitehouse.gov/omb/circulars/a004/a-4.html/] suggest that a formal quantitative uncertainty analysis be performed for economic assessments in support of major regulatory analyses, a process that can utilize both expected values and probability distributions for risk estimates. Some efforts have been made in the past to provide probability distributions of risk estimates. In this article, we examine a procedure for constructing probability distributions and expected values of risk estimates using a Bayesian framework. This approach has the advantage of mathematical soundness and computational feasibility, given the Markov chain Monte Carlo software tools that are available today. Importantly, the Bayesian framework can serve as a unifying platform for uncertainty analysis in cancer risk assessment. This paper provides some initial applications of Bayesian methods in quantitative analysis of uncertainty in cancer risk assessment, including implementation with cancer dose-response data sets for two chemicals. The Bayesian expected risk calculations provide an approach to generating a central estimate of risk that does not have the instability problems that have often limited utility of MLE risk estimates.

摘要

监管机构和科学界一直在长期努力加强健康风险评估程序。最近,这一努力的势头有所加快,为各种有毒化合物增加了生物学信息,并强调了更广泛地描述科学不确定性的政策目标(与仅提供单一风险估计形成对比)。例如,管理和预算办公室(OMB)的监管分析指南[OMB,2003年。管理和预算办公室。第A - 4号通知。可从:http://www.whitehouse.gov/omb/circulars/a004/a-4.html/获取]建议对经济评估进行正式的定量不确定性分析,以支持主要的监管分析,这一过程可以利用风险估计的期望值和概率分布。过去已经做出了一些努力来提供风险估计的概率分布。在本文中,我们研究了一种使用贝叶斯框架构建风险估计的概率分布和期望值的程序。鉴于当今可用的马尔可夫链蒙特卡罗软件工具,这种方法具有数学合理性和计算可行性的优点。重要的是,贝叶斯框架可以作为癌症风险评估中不确定性分析的统一平台。本文提供了贝叶斯方法在癌症风险评估不确定性定量分析中的一些初步应用,包括对两种化学物质的癌症剂量反应数据集的实施。贝叶斯预期风险计算提供了一种生成风险中心估计的方法,该方法不存在经常限制最大似然估计风险实用性的不稳定性问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验