Suppr超能文献

使用结构和功能磁共振成像对脑异常进行多变量检查。

Multivariate examination of brain abnormality using both structural and functional MRI.

作者信息

Fan Yong, Rao Hengyi, Hurt Hallam, Giannetta Joan, Korczykowski Marc, Shera David, Avants Brian B, Gee James C, Wang Jiongjiong, Shen Dinggang

机构信息

Department of Radiology, University of Pennsylvania, PA 19104, USA.

出版信息

Neuroimage. 2007 Jul 15;36(4):1189-99. doi: 10.1016/j.neuroimage.2007.04.009. Epub 2007 Apr 19.

Abstract

A multivariate classification approach has been presented to examine the brain abnormalities, i.e., due to prenatal cocaine exposure, using both structural and functional brain images. First, a regional statistical feature extraction scheme was adopted to capture discriminative features from voxel-wise morphometric and functional representations of brain images, in order to reduce the dimensionality of the features used for classification, as well as to achieve the robustness to registration error and inter-subject variations. Then, this feature extraction method was used in conjunction with a hybrid feature selection method and a nonlinear support vector machine for the classification of brain abnormalities. This brain classification approach has been applied to detecting the brain abnormality associated with prenatal cocaine exposure in adolescents. A promising classification performance was achieved on a data set of 49 subjects (24 normal and 25 prenatally cocaine-exposed teenagers), with a leave-one-out cross-validation. Experimental results demonstrated the efficacy of our method, as well as the importance of incorporating both structural and functional images for brain classification. Moreover, spatial patterns of group difference derived from the constructed classifier were mostly consistent with the results of the conventional statistical analysis method. Therefore, the proposed approach provided not only a multivariate classification method for detecting brain abnormalities, but also an alternative way for group analysis of multimodality images.

摘要

一种多变量分类方法已被提出,用于使用大脑结构和功能图像来检查因产前接触可卡因导致的大脑异常。首先,采用一种区域统计特征提取方案,从大脑图像的体素形态测量和功能表示中捕捉判别特征,以降低用于分类的特征维度,并实现对配准误差和个体间差异的鲁棒性。然后,将这种特征提取方法与一种混合特征选择方法和一个非线性支持向量机结合起来,用于大脑异常的分类。这种大脑分类方法已应用于检测青少年中与产前接触可卡因相关的大脑异常。在一个由49名受试者(24名正常青少年和25名产前接触可卡因的青少年)组成的数据集上,通过留一法交叉验证取得了有前景的分类性能。实验结果证明了我们方法的有效性,以及在大脑分类中纳入结构和功能图像的重要性。此外,从构建的分类器得出的组间差异的空间模式大多与传统统计分析方法的结果一致。因此,所提出的方法不仅提供了一种用于检测大脑异常的多变量分类方法,还为多模态图像的组分析提供了一种替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验