Legenstein Robert, Maass Wolfgang
Institute for Theoretical Computer Science, Technische Universitaet Graz, A-8010 Graz, Austria.
Neural Netw. 2007 Apr;20(3):323-34. doi: 10.1016/j.neunet.2007.04.017. Epub 2007 May 3.
We analyze in this article the significance of the edge of chaos for real-time computations in neural microcircuit models consisting of spiking neurons and dynamic synapses. We find that the edge of chaos predicts quite well those values of circuit parameters that yield maximal computational performance. But obviously it makes no prediction of their computational performance for other parameter values. Therefore, we propose a new method for predicting the computational performance of neural microcircuit models. The new measure estimates directly the kernel property and the generalization capability of a neural microcircuit. We validate the proposed measure by comparing its prediction with direct evaluations of the computational performance of various neural microcircuit models. The proposed method also allows us to quantify differences in the computational performance and generalization capability of neural circuits in different dynamic regimes (UP- and DOWN-states) that have been demonstrated through intracellular recordings in vivo.
在本文中,我们分析了混沌边缘对于由脉冲神经元和动态突触组成的神经微电路模型中的实时计算的意义。我们发现,混沌边缘能很好地预测那些能产生最大计算性能的电路参数值。但显然,对于其他参数值,它无法预测其计算性能。因此,我们提出了一种预测神经微电路模型计算性能的新方法。这种新度量直接估计神经微电路的核属性和泛化能力。我们通过将其预测结果与各种神经微电路模型计算性能的直接评估结果进行比较,来验证所提出的度量。所提出的方法还使我们能够量化不同动态状态(向上和向下状态)下神经电路在计算性能和泛化能力方面的差异,这些差异已通过体内细胞内记录得到证实。