Suppr超能文献

踝足动力学的动态评估。

Ambulatory assessment of ankle and foot dynamics.

作者信息

Schepers H Martin, Koopman H F J M, Veltink Peter H

机构信息

Institute for Biomedical Technology (BMTI), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

出版信息

IEEE Trans Biomed Eng. 2007 May;54(5):895-902. doi: 10.1109/TBME.2006.889769.

Abstract

Ground reaction force (GRF) measurement is important in the analysis of human body movements. The main drawback of the existing measurement systems is the restriction to a laboratory environment. This paper proposes an ambulatory system for assessing the dynamics of ankle and foot, which integrates the measurement of the GRF with the measurement of human body movement. The GRF and the center of pressure (CoP) are measured using two six-degrees-of-freedom force sensors mounted beneath the shoe. The movement of foot and lower leg is measured using three miniature inertial sensors, two rigidly attached to the shoe and one on the lower leg. The proposed system is validated using a force plate and an optical position measurement system as a reference. The results show good correspondence between both measurement systems, except for the ankle power estimation. The root mean square (RMS) difference of the magnitude of the GRF over 10 evaluated trials was (0.012 +/- 0.001) N/N (mean +/- standard deviation), being (1.1 +/- 0.1)% of the maximal GRF magnitude. It should be noted that the forces, moments, and powers are normalized with respect to body weight. The CoP estimation using both methods shows good correspondence, as indicated by the RMS difference of (5.1 +/- 0.7) mm, corresponding to (1.7 +/- 0.3)% of the length of the shoe. The RMS difference between the magnitudes of the heel position estimates was calculated as (18 +/- 6) mm, being (1.4 +/- 0.5)% of the maximal magnitude. The ankle moment RMS difference was (0.004 +/- 0.001) Nm/N, being (2.3 +/- 0.5)% of the maximal magnitude. Finally, the RMS difference of the estimated power at the ankle was (0.02 +/- 0.005) W/N, being (14 +/- 5)% of the maximal power. This power difference is caused by an inaccurate estimation of the angular velocities using the optical reference measurement system, which is due to considering the foot as a single segment. The ambulatory system considers separate heel and forefoot segments, thus allowing an additional foot moment and power to be estimated. Based on the results of this research, it is concluded that the combination of the instrumented shoe and inertial sensing is a promising tool for the assessment of the dynamics of foot and ankle in an ambulatory setting.

摘要

地面反作用力(GRF)测量在人体运动分析中至关重要。现有测量系统的主要缺点是局限于实验室环境。本文提出一种用于评估脚踝和足部动力学的便携式系统,该系统将GRF测量与人体运动测量相结合。GRF和压力中心(CoP)通过安装在鞋底下方的两个六自由度力传感器进行测量。足部和小腿的运动通过三个微型惯性传感器进行测量,其中两个牢固地连接在鞋子上,另一个安装在小腿上。所提出的系统使用测力台和光学位置测量系统作为参考进行验证。结果表明,除了脚踝功率估计外,两个测量系统之间具有良好的一致性。在10次评估试验中,GRF大小的均方根(RMS)差异为(0.012±0.001)N/N(平均值±标准差),占最大GRF大小的(1.1±0.1)%。需要注意的是,力、力矩和功率均相对于体重进行了归一化。两种方法的CoP估计显示出良好的一致性,RMS差异为(5.1±0.7)mm,占鞋长的(1.7±0.3)%。脚跟位置估计大小之间的RMS差异计算为(18±6)mm,占最大大小的(1.4±0.5)%。脚踝力矩RMS差异为(0.004±0.001)Nm/N,占最大大小的(2.3±0.5)%。最后,脚踝处估计功率的RMS差异为(0.02±0.005)W/N,占最大功率的(14±5)%。这种功率差异是由于使用光学参考测量系统对角速度的估计不准确造成的,这是因为将足部视为单个节段。便携式系统考虑了单独的脚跟和前脚掌节段,从而可以估计额外 的足部力矩和功率。基于本研究结果,得出结论:仪器化鞋子和惯性传感的组合是在动态环境中评估足部和脚踝动力学的有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验