Suppr超能文献

支架设计对体外骨形态的影响。

Effect of scaffold design on bone morphology in vitro.

作者信息

Uebersax Lorenz, Hagenmüller Henri, Hofmann Sandra, Gruenblatt Emanuel, Müller Ralph, Vunjak-Novakovic Gordana, Kaplan David L, Merkle H P, Meinel Lorenz

机构信息

Institute for Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.

出版信息

Tissue Eng. 2006 Dec;12(12):3417-29. doi: 10.1089/ten.2006.12.3417.

Abstract

Silk fibroin is an important polymer for scaffold designs, forming biocompatible and mechanically robust biomaterials for bone, cartilage, and ligament tissue engineering. In the present work, 3D biomaterial matrices were fabricated from silk fibroin with controlled pore diameter and pore interconnectivity, and utilized to engineer bone starting from human mesenchymal stem cells (hMSC). Osteogenic differentiation of hMSC seeded on these scaffolds resulted in extensive mineralization, alkaline phosphatase activity, and the formation of interconnected trabecular- or cortical-like mineralized networks as a function of the scaffold design utilized; allowing mineralized features of the tissue engineered bone to be dictated by the scaffold features used initially in the cell culture process. This approach to scaffold predictors of tissue structure expands the window of applications for silk fibroin-based biomaterials into the realm of directing the formation of complex tissue architecture. As a result of slow degradation inherent to silk fibroin, scaffolds preserved their initial morphology and provided a stable template during the mineralization phase of stem cells progressing through osteogenic differentiation and new extracellular matrix formation. The slow degradation feature also facilitated transport throughout the 3D scaffolds to foster improved homogeneity of new tissue, avoiding regions with decreased cellular density. The ability to direct bone morphology via scaffold design suggests new options in the use of biodegradable scaffolds to control in vitro engineered bone tissue outcomes.

摘要

丝素蛋白是用于支架设计的一种重要聚合物,可形成用于骨、软骨和韧带组织工程的生物相容性好且机械性能强劲的生物材料。在本研究中,由丝素蛋白制备了具有可控孔径和孔隙连通性的三维生物材料基质,并用于从人间充质干细胞(hMSC)开始构建骨组织。接种在这些支架上的hMSC的成骨分化导致了广泛的矿化、碱性磷酸酶活性,以及根据所使用的支架设计形成相互连接的小梁状或皮质状矿化网络;使得组织工程骨的矿化特征由细胞培养过程中最初使用的支架特征所决定。这种预测组织结构的支架方法将基于丝素蛋白的生物材料的应用窗口扩展到了指导复杂组织结构形成的领域。由于丝素蛋白固有的缓慢降解特性,支架在干细胞通过成骨分化和新的细胞外基质形成的矿化阶段保持了其初始形态,并提供了一个稳定的模板。缓慢降解特性还促进了在整个三维支架中的物质运输,以促进新组织更好的均匀性,避免细胞密度降低的区域。通过支架设计来指导骨形态的能力为使用可生物降解支架来控制体外工程骨组织结果提供了新的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验