Suppr超能文献

体内组织工程骨结构的改建。

Remodeling of tissue-engineered bone structures in vivo.

机构信息

Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland.

出版信息

Eur J Pharm Biopharm. 2013 Sep;85(1):119-29. doi: 10.1016/j.ejpb.2013.02.011.

Abstract

Implant design for bone regeneration is expected to be optimized when implant structures resemble the anatomical situation of the defect site. We tested the validity of this hypothesis by exploring the feasibility of generating different in vitro engineered bone-like structures originating from porous silk fibroin scaffolds decorated with RGD sequences (SF-RGD), seeded with human mesenchymal stem cells (hMSC). Scaffolds with small (106-212 μm), medium (212-300 μm), and large pore diameter ranges (300-425 μm) were seeded with hMSC and subsequently differentiated in vitro into bone-like tissue resembling initial scaffold geometries and featuring bone-like structures. Eight weeks after implantation into calvarial defects in mice, the in vitro engineered bone-like tissues had remodeled into bone featuring different proportions of woven/lamellar bone bridging the defects. Regardless of pore diameter, all implants integrated well, vascularization was advanced, and bone marrow ingrowth had started. Ultimately, in this defect model, the geometry of the in vitro generated tissue-engineered bone structure, trabecular- or plate-like, had no significant impact on the healing of the defect, owing to an efficient remodeling of its structure after implantation.

摘要

当植入物结构类似于缺损部位的解剖情况时,预计骨再生的植入物设计将得到优化。我们通过探索从具有 RGD 序列(SF-RGD)的多孔丝素支架生成不同体外工程骨样结构的可行性来验证这一假设,该支架中接种了人间充质干细胞(hMSC)。将具有小(106-212μm)、中(212-300μm)和大孔径范围(300-425μm)的支架接种 hMSC,然后在体外分化为类似于初始支架几何形状的骨样组织,并具有骨样结构。植入小鼠颅骨缺损 8 周后,体外工程化的骨样组织已重塑为具有不同编织/板层骨比例的骨,桥接缺损。无论孔径如何,所有植入物都很好地整合在一起,血管化进展,骨髓内生长已经开始。最终,在这种缺陷模型中,体外生成的组织工程骨结构的几何形状,小梁状或板状,对缺陷的愈合没有显著影响,这是由于其在植入后的结构的有效重塑。

相似文献

1
Remodeling of tissue-engineered bone structures in vivo.体内组织工程骨结构的改建。
Eur J Pharm Biopharm. 2013 Sep;85(1):119-29. doi: 10.1016/j.ejpb.2013.02.011.
3
Silk implants for the healing of critical size bone defects.用于治疗临界尺寸骨缺损的丝绸植入物。
Bone. 2005 Nov;37(5):688-98. doi: 10.1016/j.bone.2005.06.010. Epub 2005 Sep 2.

引用本文的文献

6
Ice-Templated Protein Nanoridges Induce Bone Tissue Formation.冰模板化蛋白质纳米脊诱导骨组织形成。
Adv Funct Mater. 2017 Nov 24;27(44). doi: 10.1002/adfm.201703726. Epub 2017 Oct 5.
8
Silk fibroin scaffolds with inverse opal structure for bone tissue engineering.具有反蛋白石结构的丝素蛋白支架用于骨组织工程。
J Biomed Mater Res B Appl Biomater. 2017 Oct;105(7):2074-2084. doi: 10.1002/jbm.b.33737. Epub 2016 Jul 13.
10
In vivo bioresponses to silk proteins.对丝蛋白的体内生物反应。
Biomaterials. 2015 Dec;71:145-157. doi: 10.1016/j.biomaterials.2015.08.039. Epub 2015 Aug 20.

本文引用的文献

2
A functional polymer designed for bone tissue engineering.一种用于骨组织工程的功能高分子聚合物。
Acta Biomater. 2012 Feb;8(2):502-10. doi: 10.1016/j.actbio.2011.11.004. Epub 2011 Nov 11.
3
Effect of processing on silk-based biomaterials: reproducibility and biocompatibility.丝基生物材料加工的影响:重现性和生物相容性。
J Biomed Mater Res B Appl Biomater. 2011 Oct;99(1):89-101. doi: 10.1002/jbm.b.31875. Epub 2011 Jun 21.
6
Engineered vascularized bone grafts.工程化血管化骨移植物。
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3311-6. doi: 10.1073/pnas.0905445107. Epub 2010 Feb 2.
7
Mechanisms of bone repair and regeneration.骨修复与再生的机制。
Trends Mol Med. 2009 Sep;15(9):417-29. doi: 10.1016/j.molmed.2009.07.002. Epub 2009 Sep 8.
8
Silk as a Biomaterial.丝绸作为一种生物材料。
Prog Polym Sci. 2007;32(8-9):991-1007. doi: 10.1016/j.progpolymsci.2007.05.013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验