Suppr超能文献

序列投资任务中虚构学习信号的神经特征

Neural signature of fictive learning signals in a sequential investment task.

作者信息

Lohrenz Terry, McCabe Kevin, Camerer Colin F, Montague P Read

机构信息

Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 May 29;104(22):9493-8. doi: 10.1073/pnas.0608842104. Epub 2007 May 22.

Abstract

Reinforcement learning models now provide principled guides for a wide range of reward learning experiments in animals and humans. One key learning (error) signal in these models is experiential and reports ongoing temporal differences between expected and experienced reward. However, these same abstract learning models also accommodate the existence of another class of learning signal that takes the form of a fictive error encoding ongoing differences between experienced returns and returns that "could-have-been-experienced" if decisions had been different. These observations suggest the hypothesis that, for all real-world learning tasks, one should expect the presence of both experiential and fictive learning signals. Motivated by this possibility, we used a sequential investment game and fMRI to probe ongoing brain responses to both experiential and fictive learning signals generated throughout the game. Using a large cohort of subjects (n = 54), we report that fictive learning signals strongly predict changes in subjects' investment behavior and correlate with fMRI signals measured in dopaminoceptive structures known to be involved in valuation and choice.

摘要

强化学习模型现在为动物和人类的广泛奖励学习实验提供了原则性指导。这些模型中的一个关键学习(误差)信号是经验性的,它报告了预期奖励和实际获得奖励之间持续的时间差异。然而,这些相同的抽象学习模型也考虑到了另一类学习信号的存在,这类信号以虚构误差的形式出现,编码了实际收益与如果决策不同“本可以经历”的收益之间的持续差异。这些观察结果提出了一个假设,即对于所有现实世界的学习任务,人们应该预期同时存在经验性和虚构性学习信号。受这种可能性的启发,我们使用了一个序列投资游戏和功能磁共振成像来探究大脑对游戏过程中产生的经验性和虚构性学习信号的持续反应。通过一大群受试者(n = 54),我们报告虚构性学习信号强烈预测受试者投资行为的变化,并与已知参与估值和选择的多巴胺感受结构中测量的功能磁共振成像信号相关。

相似文献

1
Neural signature of fictive learning signals in a sequential investment task.序列投资任务中虚构学习信号的神经特征
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9493-8. doi: 10.1073/pnas.0608842104. Epub 2007 May 22.
4
Computational heterogeneity in the human mesencephalic dopamine system.人类中脑多巴胺系统的计算异质性。
Cogn Affect Behav Neurosci. 2013 Dec;13(4):747-56. doi: 10.3758/s13415-013-0191-5.
5
Policy adjustment in a dynamic economic game.动态经济博弈中的政策调整。
PLoS One. 2006 Dec 20;1(1):e103. doi: 10.1371/journal.pone.0000103.
8
Fictive reward signals in the anterior cingulate cortex.前扣带回皮质中的虚构奖励信号。
Science. 2009 May 15;324(5929):948-50. doi: 10.1126/science.1168488.

引用本文的文献

2
Representation of Anticipated Rewards and Punishments in the Human Brain.人类大脑中预期奖励与惩罚的表征。
Annu Rev Psychol. 2025 Jan;76(1):197-226. doi: 10.1146/annurev-psych-022324-042614. Epub 2024 Dec 3.
3
Frequent winners explain apparent skewness preferences in experience-based decisions.频繁的赢家解释了基于经验的决策中明显的偏斜偏好。
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2317751121. doi: 10.1073/pnas.2317751121. Epub 2024 Mar 15.
10
An ALE Meta-Analysis on Investment Decision-Making.关于投资决策的ALE元分析
Brain Sci. 2021 Mar 21;11(3):399. doi: 10.3390/brainsci11030399.

本文引用的文献

1
A multivariate analysis of PET activation studies.多变量 PET 激活研究的分析。
Hum Brain Mapp. 1996;4(2):140-51. doi: 10.1002/(SICI)1097-0193(1996)4:2<140::AID-HBM5>3.0.CO;2-3.
2
Policy adjustment in a dynamic economic game.动态经济博弈中的政策调整。
PLoS One. 2006 Dec 20;1(1):e103. doi: 10.1371/journal.pone.0000103.
4
Imaging valuation models in human choice.人类选择中的成像评估模型。
Annu Rev Neurosci. 2006;29:417-48. doi: 10.1146/annurev.neuro.29.051605.112903.
6
The neural basis of financial risk taking.金融冒险行为的神经基础。
Neuron. 2005 Sep 1;47(5):763-70. doi: 10.1016/j.neuron.2005.08.008.
8
Pathological gambling caused by drugs used to treat Parkinson disease.用于治疗帕金森病的药物导致的病理性赌博。
Arch Neurol. 2005 Sep;62(9):1377-81. doi: 10.1001/archneur.62.9.noc50009. Epub 2005 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验