Suppr超能文献

在通过分析超速离心法测定大分子尺寸分布时运用先验知识。

Using prior knowledge in the determination of macromolecular size-distributions by analytical ultracentrifugation.

作者信息

Brown Patrick H, Balbo Andrea, Schuck Peter

机构信息

Protein Biophysics Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Biomacromolecules. 2007 Jun;8(6):2011-24. doi: 10.1021/bm070193j. Epub 2007 May 24.

Abstract

Analytical ultracentrifugation has reemerged as a widely used tool for the study of ensembles of biological macromolecules to understand, for example, their size-distribution and interactions in free solution. Such information can be obtained from the mathematical analysis of the concentration and signal gradients across the solution column and their evolution in time generated as a result of the gravitational force. In sedimentation velocity analytical ultracentrifugation, this analysis is frequently conducted using high resolution, diffusion-deconvoluted sedimentation coefficient distributions. They are based on Fredholm integral equations, which are ill-posed unless stabilized by regularization. In many fields, maximum entropy and Tikhonov-Phillips regularization are well-established and powerful approaches that calculate the most parsimonious distribution consistent with the data and prior knowledge, in accordance with Occam's razor. In the implementations available in analytical ultracentrifugation, to date, the basic assumption implied is that all sedimentation coefficients are equally likely and that the information retrieved should be condensed to the least amount possible. Frequently, however, more detailed distributions would be warranted by specific detailed prior knowledge on the macromolecular ensemble under study, such as the expectation of the sample to be monodisperse or paucidisperse or the expectation for the migration to establish a bimodal sedimentation pattern based on Gilbert-Jenkins' theory for the migration of chemically reacting systems. So far, such prior knowledge has remained largely unused in the calculation of the sedimentation coefficient or molecular weight distributions or was only applied as constraints. In the present paper, we examine how prior expectations can be built directly into the computational data analysis, conservatively in a way that honors the complete information of the experimental data, whether or not consistent with the prior expectation. Consistent with analogous results in other fields, we find that the use of available prior knowledge can have a dramatic effect on the resulting molecular weight, sedimentation coefficient, and size-and-shape distributions and can significantly increase both their sensitivity and their resolution. Further, the use of multiple alternative prior information allows us to probe the range of possible interpretations consistent with the data.

摘要

分析超速离心法已再度成为一种广泛应用的工具,用于研究生物大分子聚集体,以了解其在自由溶液中的大小分布和相互作用等情况。此类信息可通过对溶液柱中浓度和信号梯度及其在重力作用下随时间的演变进行数学分析来获取。在沉降速度分析超速离心中,这种分析通常使用高分辨率、扩散去卷积沉降系数分布来进行。它们基于弗雷德霍姆积分方程,这些方程是不适定的,除非通过正则化进行稳定处理。在许多领域,最大熵和蒂霍诺夫 - 菲利普斯正则化是成熟且强大的方法,它们根据奥卡姆剃刀原理,计算与数据和先验知识一致的最简洁分布。在分析超速离心法现有的实现中,迄今为止隐含的基本假设是所有沉降系数同等可能,并且检索到的信息应尽可能压缩。然而,通常情况下,基于对所研究的大分子聚集体的特定详细先验知识,更详细的分布是合理的,例如期望样品为单分散或寡分散,或者期望根据吉尔伯特 - 詹金斯化学反应体系迁移理论,迁移形成双峰沉降模式。到目前为止,此类先验知识在沉降系数或分子量分布的计算中基本未被使用,或者仅作为约束条件应用。在本文中,我们研究了如何将先验期望直接纳入计算数据分析中,以一种保守的方式尊重实验数据的完整信息,无论其是否与先验期望一致。与其他领域的类似结果一致,我们发现使用可用的先验知识会对所得的分子量、沉降系数以及大小和形状分布产生显著影响,并能显著提高它们的灵敏度和分辨率。此外,使用多种替代先验信息使我们能够探究与数据一致的可能解释范围。

相似文献

1
Using prior knowledge in the determination of macromolecular size-distributions by analytical ultracentrifugation.
Biomacromolecules. 2007 Jun;8(6):2011-24. doi: 10.1021/bm070193j. Epub 2007 May 24.
2
Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation.
Biophys J. 2006 Jun 15;90(12):4651-61. doi: 10.1529/biophysj.106.081372. Epub 2006 Mar 24.
5
Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity.
Biophys J. 2016 Jan 5;110(1):103-12. doi: 10.1016/j.bpj.2015.11.027.
6
8
A model for sedimentation in inhomogeneous media. II. Compressibility of aqueous and organic solvents.
Biophys Chem. 2004 Mar 1;108(1-3):201-14. doi: 10.1016/j.bpc.2003.10.017.
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
On computational approaches for size-and-shape distributions from sedimentation velocity analytical ultracentrifugation.
Eur Biophys J. 2010 Jul;39(8):1261-75. doi: 10.1007/s00249-009-0545-7. Epub 2009 Oct 6.

引用本文的文献

2
Hybrid modeling of an ultracentrifugation process for separation of full and empty adeno-associated virus particles.
Bioprocess Biosyst Eng. 2024 Jun;47(6):877-890. doi: 10.1007/s00449-024-03014-3. Epub 2024 May 4.
3
An automated interface for sedimentation velocity analysis in SEDFIT.
PLoS Comput Biol. 2023 Sep 5;19(9):e1011454. doi: 10.1371/journal.pcbi.1011454. eCollection 2023 Sep.
4
Raynals, an online tool for the analysis of dynamic light scattering.
Acta Crystallogr D Struct Biol. 2023 Aug 1;79(Pt 8):673-683. doi: 10.1107/S2059798323004862. Epub 2023 Jul 10.
5
An automated interface for sedimentation velocity analysis in SEDFIT.
bioRxiv. 2023 May 14:2023.05.14.540690. doi: 10.1101/2023.05.14.540690.
6
Comparative sedimentation equilibrium analysis of two IgG1 glycoforms: IgGCri and IgGWid.
Eur Biophys J. 2023 Jul;52(4-5):439-443. doi: 10.1007/s00249-023-01656-x. Epub 2023 May 17.
8
EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction.
Nat Commun. 2021 Feb 12;12(1):986. doi: 10.1038/s41467-021-21258-5.
9
Modulation of Amyloidogenic Protein Self-Assembly Using Tethered Small Molecules.
J Am Chem Soc. 2020 Dec 9;142(49):20845-20854. doi: 10.1021/jacs.0c10629. Epub 2020 Nov 30.
10
Using modern approaches to sedimentation velocity to detect conformational changes in proteins.
Eur Biophys J. 2020 Dec;49(8):729-743. doi: 10.1007/s00249-020-01453-w. Epub 2020 Aug 5.

本文引用的文献

1
Monitoring the homogeneity of adenovirus preparations (a gene therapy delivery system) using analytical ultracentrifugation.
Anal Biochem. 2007 Mar 1;362(1):16-37. doi: 10.1016/j.ab.2006.11.031. Epub 2006 Dec 20.
9
Robust reconstruction of the rate constant distribution using the phase function method.
Biophys J. 2006 Dec 1;91(11):4045-53. doi: 10.1529/biophysj.106.090688. Epub 2006 Sep 15.
10
Analytical ultracentrifugation for the study of protein association and assembly.
Curr Opin Chem Biol. 2006 Oct;10(5):430-6. doi: 10.1016/j.cbpa.2006.08.017. Epub 2006 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验