Suppr超能文献

中间丝网络的柔软性、强度和自我修复能力。

Softness, strength and self-repair in intermediate filament networks.

作者信息

Wagner Oliver I, Rammensee Sebastian, Korde Neha, Wen Qi, Leterrier Jean-Francois, Janmey Paul A

机构信息

Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, USA.

出版信息

Exp Cell Res. 2007 Jun 10;313(10):2228-35. doi: 10.1016/j.yexcr.2007.04.025. Epub 2007 Apr 27.

Abstract

One cellular function of intermediate filaments is to provide cells with compliance to small deformations while strengthening them when large stresses are applied. How IFs accomplish this mechanical role is revealed by recent studies of the elastic properties of single IF protein polymers and by viscoelastic characterization of the networks they form. IFs are unique among cytoskeletal filaments in withstanding large deformations. Single filaments can stretch to more than 3 times their initial length before breaking, and gels of IF withstand strains greater than 100% without damage. Even after mechanical disruption of gels formed by crossbridged neurofilaments, the elastic modulus of these gels rapidly recovers under conditions where gels formed by actin filaments are irreversibly ruptured. The polyelectrolyte properties of IFs may enable crossbridging by multivalent counterions, but identifying the mechanisms by which IFs link into bundles and networks in vivo remains a challenge.

摘要

中间丝的一个细胞功能是使细胞能够顺应小的变形,同时在受到大的应力时增强细胞。近期对单个中间丝蛋白聚合物弹性特性的研究以及对它们所形成网络的粘弹性表征揭示了中间丝是如何实现这一机械作用的。在承受大变形方面,中间丝在细胞骨架丝中是独一无二的。单根丝在断裂前可拉伸至其初始长度的三倍以上,中间丝凝胶能承受超过100%的应变而不受损伤。即使由交联神经丝形成的凝胶受到机械破坏,在肌动蛋白丝形成的凝胶不可逆破裂的条件下,这些凝胶的弹性模量仍能迅速恢复。中间丝的聚电解质特性可能使多价抗衡离子实现交联,但确定中间丝在体内连接成束和网络的机制仍然是一个挑战。

相似文献

1
Softness, strength and self-repair in intermediate filament networks.
Exp Cell Res. 2007 Jun 10;313(10):2228-35. doi: 10.1016/j.yexcr.2007.04.025. Epub 2007 Apr 27.
2
Mechanical Properties of Intermediate Filament Proteins.
Methods Enzymol. 2016;568:35-57. doi: 10.1016/bs.mie.2015.09.009. Epub 2015 Nov 3.
5
Intermediate filaments: primary determinants of cell architecture and plasticity.
J Clin Invest. 2009 Jul;119(7):1772-83. doi: 10.1172/JCI38214. Epub 2009 Jul 1.
7
[Intermediate-filament-associated diseases].
Biol Aujourdhui. 2011;205(3):139-46. doi: 10.1051/jbio/2011015. Epub 2011 Oct 11.
8
The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads.
Biophys J. 2003 Sep;85(3):2015-27. doi: 10.1016/S0006-3495(03)74629-3.
9
Physical properties of cytoplasmic intermediate filaments.
Biochim Biophys Acta. 2015 Nov;1853(11 Pt B):3053-64. doi: 10.1016/j.bbamcr.2015.05.009. Epub 2015 May 12.
10
Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics.
Cells. 2021 Jul 27;10(8):1905. doi: 10.3390/cells10081905.

引用本文的文献

1
Depth and Strain-Dependent Structural Responses of Mouse Lens Fiber Cells During Whole Lens Shape Changes.
Invest Ophthalmol Vis Sci. 2025 Feb 3;66(2):53. doi: 10.1167/iovs.66.2.53.
3
How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies.
Biophys Rev (Melville). 2024 Jun 3;5(2):021307. doi: 10.1063/5.0198119. eCollection 2024 Jun.
4
Biofluid biomarkers for Alzheimer's disease.
Front Aging Neurosci. 2024 Apr 10;16:1380237. doi: 10.3389/fnagi.2024.1380237. eCollection 2024.
5
Neurofilament Biophysics: From Structure to Biomechanics.
Mol Biol Cell. 2024 May 1;35(5):re1. doi: 10.1091/mbc.E23-11-0438. Epub 2024 Apr 10.
6
Quantitative mapping of keratin networks in 3D.
Elife. 2022 Feb 18;11:e75894. doi: 10.7554/eLife.75894.
8
Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics.
Cells. 2021 Jul 27;10(8):1905. doi: 10.3390/cells10081905.
10
Viscoelastic Response of Neurofilaments: An Atomistic Simulation Approach.
Biomolecules. 2021 Apr 7;11(4):540. doi: 10.3390/biom11040540.

本文引用的文献

1
Negative normal stress in semiflexible biopolymer gels.
Nat Mater. 2007 Jan;6(1):48-51. doi: 10.1038/nmat1810. Epub 2006 Dec 24.
2
Viscoelastic properties of individual glial cells and neurons in the CNS.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17759-64. doi: 10.1073/pnas.0606150103. Epub 2006 Nov 8.
3
A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin.
J Biol Chem. 2006 Oct 13;281(41):30393-9. doi: 10.1074/jbc.M605452200. Epub 2006 Aug 9.
4
Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy.
J Mol Biol. 2006 Jul 14;360(3):623-30. doi: 10.1016/j.jmb.2006.05.030.
5
Nanomechanical properties of desmin intermediate filaments.
J Struct Biol. 2006 Aug;155(2):327-39. doi: 10.1016/j.jsb.2006.03.020. Epub 2006 Apr 27.
6
Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease.
Am J Pathol. 2006 Mar;168(3):888-97. doi: 10.2353/ajpath.2006.051028.
7
Human hair keratin-associated proteins.
J Investig Dermatol Symp Proc. 2005 Dec;10(3):230-3. doi: 10.1111/j.1087-0024.2005.10112.x.
8
Exploring the mechanical behavior of single intermediate filaments.
J Mol Biol. 2005 Dec 2;354(3):569-77. doi: 10.1016/j.jmb.2005.09.092. Epub 2005 Oct 21.
9
Neurofilaments can undergo axonal transport and cytoskeletal incorporation in a discontinuous manner.
Cell Motil Cytoskeleton. 2005 Nov;62(3):166-79. doi: 10.1002/cm.20089.
10
Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments.
Trends Cell Biol. 2005 Nov;15(11):608-17. doi: 10.1016/j.tcb.2005.09.004. Epub 2005 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验