Suppr超能文献

博伊丁假丝酵母甲酸脱氢酶的高分辨率结构

High-resolution structures of formate dehydrogenase from Candida boidinii.

作者信息

Schirwitz Katja, Schmidt Andrea, Lamzin Victor S

机构信息

European Molecular Biology Laboratory, Hamburg, Germany.

出版信息

Protein Sci. 2007 Jun;16(6):1146-56. doi: 10.1110/ps.062741707.

Abstract

The understanding of the mechanism of enzymatic recovery of NADH is of biological and of considerable biotechnological interest, since the essential, but expensive, cofactor NADH is exhausted in asymmetric hydrogenation processes, but can be recovered by NAD(+)-dependent formate dehydrogenase (FDH). Most accepted for this purpose is the FDH from the yeast Candida boidinii (CbFDH), which, having relatively low thermostability and specific activity, has been targeted by enzyme engineering for several years. Optimization by mutagenesis studies was performed based on physiological studies and structure modeling. However, X-ray structural information has been required in order to clarify the enzymatic mechanism and to enhance the effectiveness and operational stability of enzymatic cofactor regenerators in biocatalytic enantiomer synthesis as well as to explain the observed biochemical differences between yeast and bacterial FDH. We designed two single-point mutants in CbFDH using an adapted surface engineering approach, and this allowed crystals suitable for high-resolution X-ray structural studies to be obtained. The mutations improved the crystallizability of the protein and also the catalytic properties and the stability of the enzyme. With these crystal structures, we explain the observed differences from both sources, and form the basis for further rational mutagenesis studies.

摘要

了解NADH的酶促回收机制具有生物学和相当大的生物技术意义,因为在不对称氢化过程中,必需但昂贵的辅因子NADH会被耗尽,但可以通过依赖NAD(+)的甲酸脱氢酶(FDH)进行回收。为此,最常用的是来自博伊丁假丝酵母的FDH(CbFDH),它的热稳定性和比活性相对较低,多年来一直是酶工程的目标。基于生理学研究和结构建模,通过诱变研究进行了优化。然而,为了阐明酶促机制,提高酶促辅因子再生剂在生物催化对映体合成中的有效性和操作稳定性,并解释酵母和细菌FDH之间观察到的生化差异,需要X射线结构信息。我们使用一种改进的表面工程方法在CbFDH中设计了两个单点突变体,这使得能够获得适合高分辨率X射线结构研究的晶体。这些突变改善了蛋白质的结晶性,也改善了酶的催化特性和稳定性。通过这些晶体结构,我们解释了从这两种来源观察到的差异,并为进一步的合理诱变研究奠定了基础。

相似文献

引用本文的文献

3
Constructing Nanocaged Enzymes for Synergistic Catalysis of CO Reduction.构建纳米笼酶协同催化 CO 还原。
Adv Sci (Weinh). 2023 Jul;10(20):e2300752. doi: 10.1002/advs.202300752. Epub 2023 May 10.
4
Cation affinity purification of histidine-tagged proteins.组氨酸标签蛋白的阳离子亲和纯化。
Appl Microbiol Biotechnol. 2023 Apr;107(7-8):2639-2651. doi: 10.1007/s00253-023-12425-3. Epub 2023 Feb 22.
7
CO to Methanol: A Highly Efficient Enzyme Cascade.CO 到甲醇:高效酶级联反应。
Methods Mol Biol. 2022;2487:317-344. doi: 10.1007/978-1-0716-2269-8_19.

本文引用的文献

1
Protein engineering of formate dehydrogenase.甲酸脱氢酶的蛋白质工程
Biomol Eng. 2006 Jun;23(2-3):89-110. doi: 10.1016/j.bioeng.2006.02.003. Epub 2006 Mar 20.
2
Entropy and surface engineering in protein crystallization.蛋白质结晶中的熵与表面工程
Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):116-24. doi: 10.1107/S0907444905035237. Epub 2005 Dec 14.
5
Catalytic mechanism and application of formate dehydrogenase.甲酸脱氢酶的催化机制及应用
Biochemistry (Mosc). 2004 Nov;69(11):1252-67. doi: 10.1007/s10541-005-0071-x.
6
Coot: model-building tools for molecular graphics.Coot:分子图形的模型构建工具。
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
7
8
Refinement of macromolecular structures by the maximum-likelihood method.用最大似然法优化大分子结构。
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
9
The CCP4 suite: programs for protein crystallography.CCP4软件包:用于蛋白质晶体学的程序。
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验