Suppr超能文献

由蛋白质极化和可移动侧链引起的钠通道中的空间选择性。

Steric selectivity in Na channels arising from protein polarization and mobile side chains.

作者信息

Boda Dezso, Nonner Wolfgang, Valiskó Mónika, Henderson Douglas, Eisenberg Bob, Gillespie Dirk

机构信息

Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA.

出版信息

Biophys J. 2007 Sep 15;93(6):1960-80. doi: 10.1529/biophysj.107.105478. Epub 2007 May 25.

Abstract

Monte Carlo simulations of equilibrium selectivity of Na channels with a DEKA locus are performed over a range of radius R and protein dielectric coefficient epsilon(p). Selectivity arises from the balance of electrostatic forces and steric repulsion by excluded volume of ions and side chains of the channel protein in the highly concentrated and charged (approximately 30 M) selectivity filter resembling an ionic liquid. Ions and structural side chains are described as mobile charged hard spheres that assume positions of minimal free energy. Water is a dielectric continuum. Size selectivity (ratio of Na+ occupancy to K+ occupancy) and charge selectivity (Na+ to Ca2+) are computed in concentrations as low as 10(-5) M Ca2+. In general, small R reduces ion occupancy and favors Na+ over K+ because of steric repulsion. Small epsilon(p) increases occupancy and favors Na+ over Ca2+ because protein polarization amplifies the pore's net charge. Size selectivity depends on R and is independent of epsilon(p); charge selectivity depends on both R and epsilon(p). Thus, small R and epsilon(p) make an efficient Na channel that excludes K+ and Ca2+ while maximizing Na+ occupancy. Selectivity properties depend on interactions that cannot be described by qualitative or verbal models or by quantitative models with a fixed free energy landscape.

摘要

对具有DEKA位点的钠通道平衡选择性进行了蒙特卡罗模拟,模拟范围涵盖一系列半径R和蛋白质介电常数ε(p)。选择性源于静电力与离子和通道蛋白侧链的排除体积所产生的空间排斥力之间的平衡,该平衡存在于高度浓缩且带电(约30M)的类似于离子液体的选择性过滤器中。离子和结构侧链被描述为移动的带电硬球,它们处于自由能最小的位置。水是一种介电连续体。在低至10^(-5)M Ca2+的浓度下计算尺寸选择性(Na+占据率与K+占据率之比)和电荷选择性(Na+与Ca2+之比)。一般来说,小的R会降低离子占据率,并且由于空间排斥力而更有利于Na+而非K+。小的ε(p)会增加占据率,并且由于蛋白质极化增强了孔的净电荷,所以更有利于Na+而非Ca2+。尺寸选择性取决于R,且与ε(p)无关;电荷选择性则取决于R和ε(p)两者。因此,小的R和ε(p)造就了一种高效的钠通道,该通道能够排除K+和Ca2+,同时使Na+占据率最大化。选择性特性取决于一些相互作用,这些相互作用无法用定性或文字模型,或具有固定自由能态势的定量模型来描述。

相似文献

1
Steric selectivity in Na channels arising from protein polarization and mobile side chains.
Biophys J. 2007 Sep 15;93(6):1960-80. doi: 10.1529/biophysj.107.105478. Epub 2007 May 25.
2
Factors governing the Na(+) vs K(+) selectivity in sodium ion channels.
J Am Chem Soc. 2010 Feb 24;132(7):2321-32. doi: 10.1021/ja909280g.
3
Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion.
J Gen Physiol. 2009 May;133(5):497-509. doi: 10.1085/jgp.200910211.
4
Self-organized models of selectivity in calcium channels.
Phys Biol. 2011 Apr;8(2):026004. doi: 10.1088/1478-3975/8/2/026004. Epub 2011 Jan 24.
5
Current and selectivity in a model sodium channel under physiological conditions: Dynamic Monte Carlo simulations.
Biochim Biophys Acta. 2012 Mar;1818(3):592-600. doi: 10.1016/j.bbamem.2011.10.029. Epub 2011 Nov 4.
6
Physical origin of selectivity in ionic channels of biological membranes.
Biophys J. 1999 Jan;76(1 Pt 1):129-48. doi: 10.1016/S0006-3495(99)77184-5.
8
Binding and selectivity in L-type calcium channels: a mean spherical approximation.
Biophys J. 2000 Oct;79(4):1976-92. doi: 10.1016/S0006-3495(00)76446-0.
9
Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands.
Biophys J. 2005 Jan;88(1):184-97. doi: 10.1529/biophysj.104.048173. Epub 2004 Oct 8.
10
Competition among Ca2+, Mg2+, and Na+ for model ion channel selectivity filters: determinants of ion selectivity.
J Phys Chem B. 2012 Sep 6;116(35):10703-14. doi: 10.1021/jp304925a. Epub 2012 Aug 23.

引用本文的文献

1
Setting Boundaries for Statistical Mechanics.
Molecules. 2022 Nov 18;27(22):8017. doi: 10.3390/molecules27228017.
2
Maxwell Equations without a Polarization Field, Using a Paradigm from Biophysics.
Entropy (Basel). 2021 Jan 30;23(2):172. doi: 10.3390/e23020172.
3
Modeling the Device Behavior of Biological and Synthetic Nanopores with Reduced Models.
Entropy (Basel). 2020 Nov 5;22(11):1259. doi: 10.3390/e22111259.
4
5
Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.
PLoS One. 2016 Sep 1;11(9):e0162413. doi: 10.1371/journal.pone.0162413. eCollection 2016.
6
Selecting ions by size in a calcium channel: the ryanodine receptor case study.
Biophys J. 2014 Nov 18;107(10):2263-73. doi: 10.1016/j.bpj.2014.09.031.
7
Interacting ions in biophysics: real is not ideal.
Biophys J. 2013 May 7;104(9):1849-66. doi: 10.1016/j.bpj.2013.03.049.
8
Light-induced oxidative stress, N-formylkynurenine, and oxygenic photosynthesis.
PLoS One. 2012;7(7):e42220. doi: 10.1371/journal.pone.0042220. Epub 2012 Jul 31.
9
Designing biomimetic pores based on carbon nanotubes.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6939-44. doi: 10.1073/pnas.1119326109. Epub 2012 Apr 16.
10
Ionizable side chains at catalytic active sites of enzymes.
Eur Biophys J. 2012 May;41(5):449-60. doi: 10.1007/s00249-012-0798-4. Epub 2012 Apr 7.

本文引用的文献

2
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
3
Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel.
Phys Rev Lett. 2007 Apr 20;98(16):168102. doi: 10.1103/PhysRevLett.98.168102. Epub 2007 Apr 17.
4
Double-layer in ionic liquids: paradigm change?
J Phys Chem B. 2007 May 24;111(20):5545-57. doi: 10.1021/jp067857o. Epub 2007 May 1.
5
Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels.
J Gen Physiol. 2007 Feb;129(2):135-43. doi: 10.1085/jgp.200609633. Epub 2007 Jan 16.
6
A cation-pi interaction between extracellular TEA and an aromatic residue in potassium channels.
J Gen Physiol. 2006 Dec;128(6):649-57. doi: 10.1085/jgp.200609654.
7
Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation.
Science. 2006 Nov 10;314(5801):1004-7. doi: 10.1126/science.1133415.
8
Ca2+ selectivity of a chemically modified OmpF with reduced pore volume.
Biophys J. 2006 Dec 15;91(12):4392-400. doi: 10.1529/biophysj.106.087114. Epub 2006 Sep 22.
10
Calcium-induced voltage gating in single conical nanopores.
Nano Lett. 2006 Aug;6(8):1729-34. doi: 10.1021/nl061114x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验