Suppr超能文献

酶催化活性部位的可离子化侧链。

Ionizable side chains at catalytic active sites of enzymes.

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.

出版信息

Eur Biophys J. 2012 May;41(5):449-60. doi: 10.1007/s00249-012-0798-4. Epub 2012 Apr 7.

Abstract

Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

摘要

通过现代计算几何程序,可以很好地定义具有已知结构的酶的催化活性部位。使用 CASTp 程序定义并测量了 Catalytic Site Atlas 数据库中 573 种酶的催化活性部位的体积。这些活性部位被认为是催化活性的,因为它们所含的氨基酸已知参与酶催化的化学反应。酸和碱基侧链是催化活性部位的可靠标记。催化活性部位有 4 个酸侧链和 5 个碱侧链,平均体积为 1072Å(3)。酸侧链的数密度为 8.3M(化学单位);碱基侧链的数密度为 10.6M。这些酶的催化活性部位是一种不寻常的静电和空间环境,其中侧链和反应物拥挤在一起,混合物更像是离子液体而不是理想的无限稀释溶液。反应物和侧链的静电和拥挤情况似乎对催化功能很重要。在三种类似的离子通道中,对拥挤电荷的模拟解释了在广泛的溶液和浓度范围内测量的选择性的主要性质。在构建酶的催化活性部位模型时,明智的做法是使用设计用于研究相互作用的复杂流体的数学方法。

相似文献

1
Ionizable side chains at catalytic active sites of enzymes.酶催化活性部位的可离子化侧链。
Eur Biophys J. 2012 May;41(5):449-60. doi: 10.1007/s00249-012-0798-4. Epub 2012 Apr 7.
3
Understanding nature's catalytic toolkit.了解大自然的催化工具包。
Trends Biochem Sci. 2005 Nov;30(11):622-9. doi: 10.1016/j.tibs.2005.09.006. Epub 2005 Oct 7.
8
Computational design of novel enzymes without cofactors.无辅因子新型酶的计算设计
Methods Mol Biol. 2014;1216:197-210. doi: 10.1007/978-1-4939-1486-9_10.

引用本文的文献

2
Setting Boundaries for Statistical Mechanics.为统计力学设定界限。
Molecules. 2022 Nov 18;27(22):8017. doi: 10.3390/molecules27228017.
3
An Overview of Antennal Esterases in Lepidoptera.鳞翅目昆虫触角酯酶概述
Front Physiol. 2021 Mar 31;12:643281. doi: 10.3389/fphys.2021.643281. eCollection 2021.
4
On the polarization of ligands by proteins.蛋白质对配体的极化作用。
Phys Chem Chem Phys. 2020 Jun 4;22(21):12044-12057. doi: 10.1039/d0cp00376j.
6
Continuum Gating Current Models Computed with Consistent Interactions.用一致相互作用计算的连续门控电流模型。
Biophys J. 2019 Jan 22;116(2):270-282. doi: 10.1016/j.bpj.2018.11.3140. Epub 2018 Dec 14.
7
CASTp 3.0: computed atlas of surface topography of proteins.CASTp 3.0:蛋白质表面形貌计算图谱。
Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367. doi: 10.1093/nar/gky473.

本文引用的文献

2
Structure and dynamics of the membrane-bound cytochrome P450 2C9.膜结合细胞色素 P450 2C9 的结构与动力学。
PLoS Comput Biol. 2011 Aug;7(8):e1002152. doi: 10.1371/journal.pcbi.1002152. Epub 2011 Aug 11.
3
Mass Action in Ionic Solutions.离子溶液中的质量作用
Chem Phys Lett. 2011 Jul 26;511(1-3):1-6. doi: 10.1016/j.cplett.2011.05.037.
7
Multiple Scales in the Simulation of Ion Channels and Proteins.离子通道与蛋白质模拟中的多尺度问题
J Phys Chem C Nanomater Interfaces. 2010 Oct 21;114(48):20719-20733. doi: 10.1021/jp106760t.
8
Multibody effects in ion binding and selectivity.离子结合和选择性中的多体效应。
Biophys J. 2010 Nov 17;99(10):3394-401. doi: 10.1016/j.bpj.2010.09.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验