文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

VGIchan:电压门控离子通道的预测与分类

VGIchan: prediction and classification of voltage-gated ion channels.

作者信息

Saha Sudipto, Zack Jyoti, Singh Balvinder, Raghava G P S

机构信息

Institute of Microbial Technology, Chandigarh 160036, India.

出版信息

Genomics Proteomics Bioinformatics. 2006 Nov;4(4):253-8. doi: 10.1016/S1672-0229(07)60006-0.


DOI:10.1016/S1672-0229(07)60006-0
PMID:17531801
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5054079/
Abstract

This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSI-BLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptide-based SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches.

摘要

本研究描述了预测和分类电压门控离子通道的方法。首先,开发了一种标准支持向量机(SVM)方法,通过使用氨基酸组成和二肽组成来预测离子通道,准确率分别为82.89%和85.56%。当与PSI-BLAST相似性搜索相结合时,该SVM方法的准确率从85.56%提高到了89.11%。然后,我们开发了一种利用二肽组成对离子通道(钾离子、钠离子、钙离子和氯离子通道)进行分类的SVM方法,总体准确率达到了96.89%。通过结合基于二肽的SVM和隐马尔可夫模型方法的混合方法,我们进一步实现了97.78%的分类准确率。已经开发了一个网络服务器VGIchan,用于使用上述方法预测和分类电压门控离子通道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/5054079/aacf3890bae6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/5054079/4bfea7498c40/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/5054079/1b5fb7e11f4c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/5054079/aacf3890bae6/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/5054079/4bfea7498c40/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/5054079/1b5fb7e11f4c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8887/5054079/aacf3890bae6/gr3.jpg

相似文献

[1]
VGIchan: prediction and classification of voltage-gated ion channels.

Genomics Proteomics Bioinformatics. 2006-11

[2]
Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine.

Comput Biol Med. 2012-1-31

[3]
Machine learning-based approach for prediction of ion channels and their subclasses.

J Cell Biochem. 2023-1

[4]
Local sequence information-based support vector machine to classify voltage-gated potassium channels.

Acta Biochim Biophys Sin (Shanghai). 2006-6

[5]
Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition.

J Theor Biol. 2010-10-20

[6]
A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.

In Silico Biol. 2008

[7]
An efficient approach for the prediction of ion channels and their subfamilies.

Comput Biol Chem. 2015-10

[8]
Molecular pathophysiology of voltage-gated ion channels.

Rev Physiol Biochem Pharmacol. 1996

[9]
BTXpred: prediction of bacterial toxins.

In Silico Biol. 2007

[10]
Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study.

J Mol Microbiol Biotechnol. 1999-11

引用本文的文献

[1]
GPT2-ICC: A data-driven approach for accurate ion channel identification using pre-trained large language models.

J Pharm Anal. 2025-8

[2]
Artificial Intelligence, Machine Learning and Deep Learning in Ion Channel Bioinformatics.

Membranes (Basel). 2021-8-31

[3]
PSIONplus Server for Accurate Multi-Label Prediction of Ion Channels and Their Types.

Biomolecules. 2020-6-7

[4]
Endoplasmic reticulum retention signaling and transmembrane channel proteins predicted for oilseed ω3 fatty acid desaturase 3 (FAD3) genes.

Funct Integr Genomics. 2020-5

[5]
Predicting Ion Channels Genes and Their Types With Machine Learning Techniques.

Front Genet. 2019-5-3

[6]
IonchanPred 2.0: A Tool to Predict Ion Channels and Their Types.

Int J Mol Sci. 2017-8-24

[7]
PSIONplus: Accurate Sequence-Based Predictor of Ion Channels and Their Types.

PLoS One. 2016-4-4

[8]
Pipeline for the identification and classification of ion channels in parasitic flatworms.

Parasit Vectors. 2016-3-16

[9]
Briefing in application of machine learning methods in ion channel prediction.

ScientificWorldJournal. 2015

[10]
Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

Acta Pharmacol Sin. 2013-11-18

本文引用的文献

[1]
Voltage-gated ion channels.

Curr Biol. 2005-1-26

[2]
Voltage gated ion channels: targets for anticonvulsant drugs.

Curr Top Med Chem. 2005

[3]
Ion channels as important targets for antiepileptic drug design.

Curr Drug Targets. 2004-10

[4]
VKCDB: voltage-gated potassium channel database.

BMC Bioinformatics. 2004-1-9

[5]
The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics.

J Neurosci. 2000-9-1

[6]
Assessing the accuracy of prediction algorithms for classification: an overview.

Bioinformatics. 2000-5

[7]
Calcium-antagonist drugs.

N Engl J Med. 1999-11-4

[8]
Profile hidden Markov models.

Bioinformatics. 1998

[9]
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Nucleic Acids Res. 1997-9-1

[10]
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.

Nucleic Acids Res. 1994-11-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索