Saha Sudipto, Zack Jyoti, Singh Balvinder, Raghava G P S
Institute of Microbial Technology, Chandigarh 160036, India.
Genomics Proteomics Bioinformatics. 2006 Nov;4(4):253-8. doi: 10.1016/S1672-0229(07)60006-0.
This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSI-BLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptide-based SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches.
本研究描述了预测和分类电压门控离子通道的方法。首先,开发了一种标准支持向量机(SVM)方法,通过使用氨基酸组成和二肽组成来预测离子通道,准确率分别为82.89%和85.56%。当与PSI-BLAST相似性搜索相结合时,该SVM方法的准确率从85.56%提高到了89.11%。然后,我们开发了一种利用二肽组成对离子通道(钾离子、钠离子、钙离子和氯离子通道)进行分类的SVM方法,总体准确率达到了96.89%。通过结合基于二肽的SVM和隐马尔可夫模型方法的混合方法,我们进一步实现了97.78%的分类准确率。已经开发了一个网络服务器VGIchan,用于使用上述方法预测和分类电压门控离子通道。
Genomics Proteomics Bioinformatics. 2006-11
J Cell Biochem. 2023-1
Acta Biochim Biophys Sin (Shanghai). 2006-6
J Theor Biol. 2010-10-20
Comput Biol Chem. 2015-10
Rev Physiol Biochem Pharmacol. 1996
In Silico Biol. 2007
J Mol Microbiol Biotechnol. 1999-11
Membranes (Basel). 2021-8-31
Biomolecules. 2020-6-7
Front Genet. 2019-5-3
Int J Mol Sci. 2017-8-24
Parasit Vectors. 2016-3-16
ScientificWorldJournal. 2015
Acta Pharmacol Sin. 2013-11-18
Curr Biol. 2005-1-26
Curr Top Med Chem. 2005
Curr Drug Targets. 2004-10
BMC Bioinformatics. 2004-1-9
Bioinformatics. 2000-5
N Engl J Med. 1999-11-4
Bioinformatics. 1998
Nucleic Acids Res. 1997-9-1