Suppr超能文献

使用支持向量机从序列信息中鉴定电压门控钾通道亚家族。

Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine.

机构信息

Department of Physics, College of Sciences, Hebei United University, Tangshan 063000, China.

出版信息

Comput Biol Med. 2012 Apr;42(4):504-7. doi: 10.1016/j.compbiomed.2012.01.003. Epub 2012 Jan 31.

Abstract

Proteins belonging to different subfamilies of Voltage-gated K(+) channels (VKC) are functionally divergent. The traditional method to classify ion channels is more time consuming. Thus, it is highly desirable to develop novel computational methods for VKC subfamily classification. In this study, a support vector machine based method was proposed to predict VKC subfamilies using amino acid and dipeptide compositions. In order to remove redundant information, a novel feature selection technique was employed to single out optimized features. In the jackknife cross-validation, the proposed method (VKCPred) achieved an overall accuracy of 93.09% with 93.22% average sensitivity and 98.34% average specificity, which are superior to that of other two state-of-the-art classifiers. These results indicate that VKCPred can be efficiently used to identify and annotate voltage-gated K(+) channels' subfamilies. The VKCPred software and dataset are freely available at http://cobi.uestc.edu.cn/people/hlin/tools/VKCPred/.

摘要

属于不同电压门控钾(K+)通道(VKC)亚家族的蛋白质在功能上是不同的。传统的离子通道分类方法比较耗时。因此,开发用于 VKC 亚家族分类的新型计算方法是非常需要的。在这项研究中,提出了一种基于支持向量机的方法,使用氨基酸和二肽组成来预测 VKC 亚家族。为了去除冗余信息,采用了一种新颖的特征选择技术来挑选出优化的特征。在 Jackknife 交叉验证中,所提出的方法(VKCPred)的整体准确性为 93.09%,平均灵敏度为 93.22%,平均特异性为 98.34%,优于其他两种最先进的分类器。这些结果表明,VKCPred 可以有效地用于识别和注释电压门控 K+通道的亚家族。VKCPred 软件和数据集可在 http://cobi.uestc.edu.cn/people/hlin/tools/VKCPred/ 免费获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验