Department of Physics, College of Sciences, Hebei United University, Tangshan 063000, China.
Comput Biol Med. 2012 Apr;42(4):504-7. doi: 10.1016/j.compbiomed.2012.01.003. Epub 2012 Jan 31.
Proteins belonging to different subfamilies of Voltage-gated K(+) channels (VKC) are functionally divergent. The traditional method to classify ion channels is more time consuming. Thus, it is highly desirable to develop novel computational methods for VKC subfamily classification. In this study, a support vector machine based method was proposed to predict VKC subfamilies using amino acid and dipeptide compositions. In order to remove redundant information, a novel feature selection technique was employed to single out optimized features. In the jackknife cross-validation, the proposed method (VKCPred) achieved an overall accuracy of 93.09% with 93.22% average sensitivity and 98.34% average specificity, which are superior to that of other two state-of-the-art classifiers. These results indicate that VKCPred can be efficiently used to identify and annotate voltage-gated K(+) channels' subfamilies. The VKCPred software and dataset are freely available at http://cobi.uestc.edu.cn/people/hlin/tools/VKCPred/.
属于不同电压门控钾(K+)通道(VKC)亚家族的蛋白质在功能上是不同的。传统的离子通道分类方法比较耗时。因此,开发用于 VKC 亚家族分类的新型计算方法是非常需要的。在这项研究中,提出了一种基于支持向量机的方法,使用氨基酸和二肽组成来预测 VKC 亚家族。为了去除冗余信息,采用了一种新颖的特征选择技术来挑选出优化的特征。在 Jackknife 交叉验证中,所提出的方法(VKCPred)的整体准确性为 93.09%,平均灵敏度为 93.22%,平均特异性为 98.34%,优于其他两种最先进的分类器。这些结果表明,VKCPred 可以有效地用于识别和注释电压门控 K+通道的亚家族。VKCPred 软件和数据集可在 http://cobi.uestc.edu.cn/people/hlin/tools/VKCPred/ 免费获得。