Suppr超能文献

基于伪氨基酸组成的二肽模式预测离子通道及其类型。

Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition.

机构信息

Key Laboratory for NeuroInformation of Ministry of Education, Center of Bioinformatics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

J Theor Biol. 2011 Jan 21;269(1):64-9. doi: 10.1016/j.jtbi.2010.10.019. Epub 2010 Oct 20.

Abstract

Ion channels are integral membrane proteins that control movement of ions into or out of cells. They are key components in a wide range of biological processes. Different types of ion channels have different biological functions. With the appearance of vast proteomic data, it is highly desirable for both basic research and drug-target discovery to develop a computational method for the reliable prediction of ion channels and their types. In this study, we developed a support vector machine-based method to predict ion channels and their types using primary sequence information. A feature selection technique, analysis of variance (ANOVA), was introduced to remove feature redundancy and find out an optimized feature set for improving predictive performance. Jackknife cross-validated results show that the proposed method can discriminate ion channels from non-ion channels with an overall accuracy of 86.6%, classify voltage-gated ion channels and ligand-gated ion channels with an overall accuracy of 92.6% and predict four types (potassium, sodium, calcium and anion) of voltage-gated ion channels with an overall accuracy of 87.8%, respectively. These results indicate that the proposed method can correctly identify ion channels and provide important instructions for drug-target discovery. The predictor can be freely downloaded from http://cobi.uestc.edu.cn/people/hlin/tools/IonchanPred/.

摘要

离子通道是整合膜蛋白,控制离子进出细胞。它们是广泛生物过程的关键组成部分。不同类型的离子通道具有不同的生物学功能。随着蛋白质组学数据的大量出现,对于基础研究和药物靶点发现来说,开发一种可靠预测离子通道及其类型的计算方法是非常需要的。在这项研究中,我们开发了一种基于支持向量机的方法,使用原始序列信息来预测离子通道及其类型。引入了特征选择技术方差分析 (ANOVA),以去除特征冗余并找到优化的特征集,以提高预测性能。Jackknife 交叉验证结果表明,该方法可以区分离子通道和非离子通道,总体准确率为 86.6%,分类电压门控离子通道和配体门控离子通道的总体准确率为 92.6%,预测四种类型(钾、钠、钙和阴离子)的电压门控离子通道的总体准确率为 87.8%。这些结果表明,该方法可以正确识别离子通道,并为药物靶点发现提供重要指导。预测器可从 http://cobi.uestc.edu.cn/people/hlin/tools/IonchanPred/ 免费下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验