IonchanPred 2.0:一种预测离子通道及其类型的工具。

IonchanPred 2.0: A Tool to Predict Ion Channels and Their Types.

作者信息

Zhao Ya-Wei, Su Zhen-Dong, Yang Wuritu, Lin Hao, Chen Wei, Tang Hua

机构信息

Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.

Development and Planning Department, Inner Mongolia University, Hohhot 010021, China.

出版信息

Int J Mol Sci. 2017 Aug 24;18(9):1838. doi: 10.3390/ijms18091838.

Abstract

Ion channels (IC) are ion-permeable protein pores located in the lipid membranes of all cells. Different ion channels have unique functions in different biological processes. Due to the rapid development of high-throughput mass spectrometry, proteomic data are rapidly accumulating and provide us an opportunity to systematically investigate and predict ion channels and their types. In this paper, we constructed a support vector machine (SVM)-based model to quickly predict ion channels and their types. By considering the residue sequence information and their physicochemical properties, a novel feature-extracted method which combined dipeptide composition with the physicochemical correlation between two residues was employed. A feature selection strategy was used to improve the performance of the model. Comparison results of in jackknife cross-validation demonstrated that our method was superior to other methods for predicting ion channels and their types. Based on the model, we built a web server called IonchanPred which can be freely accessed from http://lin.uestc.edu.cn/server/IonchanPredv2.0.

摘要

离子通道(IC)是位于所有细胞脂质膜中的离子通透蛋白孔道。不同的离子通道在不同的生物过程中具有独特的功能。由于高通量质谱技术的快速发展,蛋白质组学数据迅速积累,为我们系统地研究和预测离子通道及其类型提供了机会。在本文中,我们构建了一个基于支持向量机(SVM)的模型来快速预测离子通道及其类型。通过考虑残基序列信息及其物理化学性质,采用了一种将二肽组成与两个残基之间的物理化学相关性相结合的新型特征提取方法。使用了一种特征选择策略来提高模型的性能。留一法交叉验证的比较结果表明,我们的方法在预测离子通道及其类型方面优于其他方法。基于该模型,我们构建了一个名为IonchanPred的网络服务器,可从http://lin.uestc.edu.cn/server/IonchanPredv2.0免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0541/5618487/4bd2d3851e4d/ijms-18-01838-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索