Suppr超能文献

工程或天然组织冷冻保存中添加和去除抗冻剂的数学建模。

Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues.

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.

出版信息

Cryobiology. 2012 Feb;64(1):1-11. doi: 10.1016/j.cryobiol.2011.11.006. Epub 2011 Nov 28.

Abstract

Long-term storage of natural tissues or tissue-engineered constructs is critical to allow off-the-shelf availability. Vitrification is a method of cryopreservation that eliminates ice formation, as ice may be detrimental to the function of natural or bioartificial tissues. In order to achieve the vitreous state, high concentrations of CPAs must be added and later removed. The high concentrations may be deleterious to cells as the CPAs are cytotoxic and single-step addition or removal will result in excessive osmotic excursions and cell death. A previously described mathematical model accounting for the mass transfer of CPAs through the sample matrix and cell membrane was expanded to incorporate heat transfer and CPA cytotoxicity. Simulations were performed for two systems, an encapsulated system of insulin-secreting cells and articular cartilage, each with different transport properties, geometry and size. Cytotoxicity and mass transfer are dependent on temperature, with a higher temperature allowing more rapid mass transfer but also causing increased cytotoxicity. The effects of temperature are exacerbated for articular cartilage, which has larger dimensions and slower mass transport through the matrix. Simulations indicate that addition and removal at 4°C is preferable to 25°C, as cell death is higher at 25°C due to increased cytotoxicity in spite of the faster mass transport. Additionally, the model indicates that less cytotoxic CPAs, especially at high temperature, would significantly improve the cryopreservation outcome. Overall, the mathematical model allows the design of addition and removal protocols that insure CPA equilibration throughout the sample while still minimizing CPA exposure and maximizing cell survival.

摘要

长期储存天然组织或组织工程构建体对于实现即用型的可用性至关重要。玻璃化是一种冷冻保存方法,可避免冰晶形成,因为冰晶可能对天然或生物人工组织的功能造成损害。为了实现玻璃态,必须添加并随后去除高浓度的 CPAs。由于 CPAs 具有细胞毒性,因此高浓度可能对细胞有害,而单次添加或去除会导致渗透压过度波动和细胞死亡。之前描述的一个考虑 CPAs 通过样品基质和细胞膜的质量传递的数学模型被扩展以纳入热传递和 CPA 细胞毒性。针对两个系统(封装的胰岛素分泌细胞和关节软骨)进行了模拟,每个系统都具有不同的传输特性、几何形状和尺寸。细胞毒性和质量传递取决于温度,较高的温度允许更快的质量传递,但也会导致更高的细胞毒性。对于具有较大尺寸和通过基质较慢的质量传递的关节软骨,温度的影响更为严重。模拟表明,4°C 的添加和去除优于 25°C,因为尽管更快的质量传递,但由于细胞毒性增加,25°C 时细胞死亡更高。此外,该模型表明,更具细胞毒性的 CPAs(尤其是在高温下)将显著改善冷冻保存效果。总体而言,该数学模型允许设计添加和去除方案,确保在整个样品中实现 CPA 平衡,同时仍尽量减少 CPA 暴露并最大程度地提高细胞存活率。

相似文献

1
Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues.
Cryobiology. 2012 Feb;64(1):1-11. doi: 10.1016/j.cryobiol.2011.11.006. Epub 2011 Nov 28.
2
Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations.
Cryobiology. 2007 Aug;55(1):10-8. doi: 10.1016/j.cryobiol.2007.04.002. Epub 2007 Apr 10.
3
Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions.
Cryobiology. 2011 Apr;62(2):115-22. doi: 10.1016/j.cryobiol.2011.01.012. Epub 2011 Jan 22.
4
Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies.
Osteoarthritis Cartilage. 2008 Nov;16(11):1379-86. doi: 10.1016/j.joca.2008.03.027. Epub 2008 Jun 9.
5
Modeling of cryopreservation of engineered tissues with one-dimensional geometry.
Biotechnol Prog. 2002 Mar-Apr;18(2):354-61. doi: 10.1021/bp0101886.
6
Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage.
Cryobiology. 2020 Feb 1;92:151-160. doi: 10.1016/j.cryobiol.2020.01.001. Epub 2020 Jan 7.
7
Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells.
PLoS One. 2015 Nov 25;10(11):e0142828. doi: 10.1371/journal.pone.0142828. eCollection 2015.
8
Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes.
Cryobiology. 2019 Jun;88:98-105. doi: 10.1016/j.cryobiol.2019.02.004. Epub 2019 Feb 28.
9
Cryoprotective agent toxicity interactions in human articular chondrocytes.
Cryobiology. 2012 Jun;64(3):185-91. doi: 10.1016/j.cryobiol.2012.01.006. Epub 2012 Jan 18.
10
General tissue mass transfer model for cryopreservation applications.
Biophys J. 2021 Nov 16;120(22):4980-4991. doi: 10.1016/j.bpj.2021.10.014. Epub 2021 Oct 16.

引用本文的文献

3
Multiple cryoprotectant toxicity model for vitrification solution optimization.
Cryobiology. 2022 Oct;108:1-9. doi: 10.1016/j.cryobiol.2022.09.002. Epub 2022 Sep 13.
4
General tissue mass transfer model for cryopreservation applications.
Biophys J. 2021 Nov 16;120(22):4980-4991. doi: 10.1016/j.bpj.2021.10.014. Epub 2021 Oct 16.
5
Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy.
BioDrugs. 2021 Sep;35(5):529-545. doi: 10.1007/s40259-021-00494-7. Epub 2021 Aug 24.
7
Vitrification of particulated articular cartilage via calculated protocols.
NPJ Regen Med. 2021 Mar 19;6(1):15. doi: 10.1038/s41536-021-00123-5.
8
Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method.
Cryobiology. 2021 Feb;98:219-232. doi: 10.1016/j.cryobiol.2020.10.017. Epub 2020 Nov 4.
10
Foundations of modeling in cryobiology-II: Heat and mass transport in bulk and at cell membrane and ice-liquid interfaces.
Cryobiology. 2019 Dec;91:3-17. doi: 10.1016/j.cryobiol.2019.09.014. Epub 2019 Oct 4.

本文引用的文献

2
Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions.
Cryobiology. 2011 Apr;62(2):115-22. doi: 10.1016/j.cryobiol.2011.01.012. Epub 2011 Jan 22.
3
Cryoprotectant agent toxicity in porcine articular chondrocytes.
Cryobiology. 2010 Dec;61(3):297-302. doi: 10.1016/j.cryobiol.2010.10.002. Epub 2010 Oct 19.
4
Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions.
Cryobiology. 2010 Aug;61(1):123-7. doi: 10.1016/j.cryobiol.2010.05.008. Epub 2010 Jun 15.
5
Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media.
J Biomech. 2010 Aug 26;43(12):2267-73. doi: 10.1016/j.jbiomech.2010.04.041. Epub 2010 May 31.
8
The role of tissue engineering in articular cartilage repair and regeneration.
Crit Rev Biomed Eng. 2009;37(1-2):1-57. doi: 10.1615/critrevbiomedeng.v37.i1-2.10.
9
The relevance of ice crystal formation for the cryopreservation of tissues and organs.
Cryobiology. 2010 Jul;60(3 Suppl):S36-44. doi: 10.1016/j.cryobiol.2010.02.003. Epub 2010 Feb 14.
10
Vitrification of porcine articular cartilage.
Cryobiology. 2010 Apr;60(2):217-21. doi: 10.1016/j.cryobiol.2009.12.003. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验