Suppr超能文献

用于合理药物设计的化学基因组学方法。

Chemogenomic approaches to rational drug design.

作者信息

Rognan D

机构信息

Bioinformatics of the Drug, Centre National de la Recherche Scientifique UMR 7175-LC1, F-67400 Illkirch, France.

出版信息

Br J Pharmacol. 2007 Sep;152(1):38-52. doi: 10.1038/sj.bjp.0707307. Epub 2007 May 29.

Abstract

Paradigms in drug design and discovery are changing at a significant pace. Concomitant to the sequencing of over 180 several genomes, the high-throughput miniaturization of chemical synthesis and biological evaluation of a multiple compounds on gene/protein expression and function opens the way to global drug-discovery approaches, no more focused on a single target but on an entire family of related proteins or on a full metabolic pathway. Chemogenomics is this emerging research field aimed at systematically studying the biological effect of a wide array of small molecular-weight ligands on a wide array of macromolecular targets. Since the quantity of existing data (compounds, targets and assays) and of produced information (gene/protein expression levels and binding constants) are too large for manual manipulation, information technologies play a crucial role in planning, analysing and predicting chemogenomic data. The present review will focus on predictive in silico chemogenomic approaches to foster rational drug design and derive information from the simultaneous biological evaluation of multiple compounds on multiple targets. State-of-the-art methods for navigating in either ligand or target space will be presented and concrete drug design applications will be mentioned.

摘要

药物设计与发现的模式正在迅速改变。伴随着180多个基因组的测序,化学合成的高通量微型化以及对多种化合物在基因/蛋白质表达和功能方面的生物学评估,为全球药物发现方法开辟了道路,不再聚焦于单个靶点,而是关注整个相关蛋白质家族或完整的代谢途径。化学基因组学就是这样一个新兴的研究领域,旨在系统地研究一系列小分子配体对一系列大分子靶点的生物学效应。由于现有数据(化合物、靶点和检测方法)的数量以及所产生信息(基因/蛋白质表达水平和结合常数)的数量过于庞大,无法进行人工处理,信息技术在化学基因组数据的规划、分析和预测中发挥着至关重要的作用。本综述将聚焦于基于计算机的预测性化学基因组学方法,以促进合理药物设计,并从对多种化合物在多个靶点上的同步生物学评估中获取信息。将介绍在配体或靶点空间中导航的最新方法,并提及具体的药物设计应用。

相似文献

1
Chemogenomic approaches to rational drug design.
Br J Pharmacol. 2007 Sep;152(1):38-52. doi: 10.1038/sj.bjp.0707307. Epub 2007 May 29.
2
Chemogenomic approaches to drug discovery: similar receptors bind similar ligands.
Br J Pharmacol. 2007 Sep;152(1):5-7. doi: 10.1038/sj.bjp.0707308. Epub 2007 May 29.
3
In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling.
Br J Pharmacol. 2007 Sep;152(1):9-20. doi: 10.1038/sj.bjp.0707305. Epub 2007 Jun 4.
4
Compound library design for target families.
Methods Mol Biol. 2009;575:21-46. doi: 10.1007/978-1-60761-274-2_2.
5
In silico pharmacology for drug discovery: applications to targets and beyond.
Br J Pharmacol. 2007 Sep;152(1):21-37. doi: 10.1038/sj.bjp.0707306. Epub 2007 Jun 4.
8
Drug design strategies for targeting G-protein-coupled receptors.
Chembiochem. 2002 Oct 4;3(10):928-44. doi: 10.1002/1439-7633(20021004)3:10<928::AID-CBIC928>3.0.CO;2-5.
9
Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel.
J Chem Inf Model. 2011 Jul 25;51(7):1593-603. doi: 10.1021/ci200166t. Epub 2011 Jun 21.
10
Recent trends in library design: 'rational design' revisited.
Curr Opin Drug Discov Devel. 2008 May;11(3):375-80.

引用本文的文献

1
Drug to genome to drug: a computational large-scale chemogenomics screening for novel drug candidates against sporotrichosis.
Braz J Microbiol. 2024 Sep;55(3):2655-2667. doi: 10.1007/s42770-024-01406-x. Epub 2024 Jun 18.
4
Comprehensive survey of target prediction web servers for Traditional Chinese Medicine.
Heliyon. 2023 Aug 15;9(8):e19151. doi: 10.1016/j.heliyon.2023.e19151. eCollection 2023 Aug.
5
Exploring the Potential of GANs in Biological Sequence Analysis.
Biology (Basel). 2023 Jun 14;12(6):854. doi: 10.3390/biology12060854.
6
Proteochemometric Modeling Identifies Chemically Diverse Norepinephrine Transporter Inhibitors.
J Chem Inf Model. 2023 Mar 27;63(6):1745-1755. doi: 10.1021/acs.jcim.2c01645. Epub 2023 Mar 16.
7
AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.
Drug Discov Today. 2023 Jun;28(6):103551. doi: 10.1016/j.drudis.2023.103551. Epub 2023 Mar 11.
8
Drug-target interaction prediction based on protein features, using wrapper feature selection.
Sci Rep. 2023 Mar 3;13(1):3594. doi: 10.1038/s41598-023-30026-y.
9
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease.
Pharmaceuticals (Basel). 2022 Dec 14;15(12):1560. doi: 10.3390/ph15121560.

本文引用的文献

1
Optimizing fragment and scaffold docking by use of molecular interaction fingerprints.
J Chem Inf Model. 2007 Jan-Feb;47(1):195-207. doi: 10.1021/ci600342e.
3
5
Similarity-based virtual screening using 2D fingerprints.
Drug Discov Today. 2006 Dec;11(23-24):1046-53. doi: 10.1016/j.drudis.2006.10.005. Epub 2006 Oct 20.
6
Ligand-based approach to in silico pharmacology: nuclear receptor profiling.
J Chem Inf Model. 2006 Nov-Dec;46(6):2725-36. doi: 10.1021/ci600300k.
7
Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion.
J Chem Inf Model. 2006 Nov-Dec;46(6):2674-83. doi: 10.1021/ci060087t.
10
Parallel screening: a novel concept in pharmacophore modeling and virtual screening.
J Chem Inf Model. 2006 Sep-Oct;46(5):2146-57. doi: 10.1021/ci6002043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验