Suppr超能文献

基于化学计量组学的模型鉴定具有化学多样性的去甲肾上腺素转运体抑制剂。

Proteochemometric Modeling Identifies Chemically Diverse Norepinephrine Transporter Inhibitors.

机构信息

Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.

Enamine Ltd, Chervonotkatska Street, 78, Kyiv 02094, Ukraine.

出版信息

J Chem Inf Model. 2023 Mar 27;63(6):1745-1755. doi: 10.1021/acs.jcim.2c01645. Epub 2023 Mar 16.

Abstract

Solute carriers (SLCs) are relatively underexplored compared to other prominent protein families such as kinases and G protein-coupled receptors. However, proteins from the SLC family play an essential role in various diseases. One such SLC is the high-affinity norepinephrine transporter (NET/SLC6A2). In contrast to most other SLCs, the NET has been relatively well studied. However, the chemical space of known ligands has a low chemical diversity, making it challenging to identify chemically novel ligands. Here, a computational screening pipeline was developed to find new NET inhibitors. The approach increases the chemical space to model for NETs using the chemical space of related proteins that were selected utilizing similarity networks. Prior proteochemometric models added data from related proteins, but here we use a data-driven approach to select the optimal proteins to add to the modeled data set. After optimizing the data set, the proteochemometric model was optimized using stepwise feature selection. The final model was created using a two-step approach combining several proteochemometric machine learning models through stacking. This model was applied to the extensive virtual compound database of Enamine, from which the top predicted 22,000 of the 600 million virtual compounds were clustered to end up with 46 chemically diverse candidates. A subselection of 32 candidates was synthesized and subsequently tested using an impedance-based assay. There were five hit compounds identified (hit rate 16%) with sub-micromolar inhibitory potencies toward NET, which are promising for follow-up experimental research. This study demonstrates a data-driven approach to diversify known chemical space to identify novel ligands and is to our knowledge the first to select this set based on the sequence similarity of related targets.

摘要

与其他著名的蛋白质家族(如激酶和 G 蛋白偶联受体)相比,溶质载体(SLCs)的研究相对较少。然而,SLC 家族的蛋白质在各种疾病中起着至关重要的作用。其中一种 SLC 是高亲和力去甲肾上腺素转运体(NET/SLC6A2)。与大多数其他 SLC 不同,NET 已经得到了相对较好的研究。然而,已知配体的化学空间具有较低的化学多样性,因此很难识别具有新颖化学结构的配体。在这里,开发了一种计算筛选管道来寻找新的 NET 抑制剂。该方法通过使用相似性网络选择的相关蛋白质的化学空间来增加 NET 的化学空间模型。先前的蛋白质化学计量模型增加了来自相关蛋白质的数据,但在这里,我们使用数据驱动的方法来选择要添加到建模数据集的最佳蛋白质。优化数据集后,使用逐步特征选择对蛋白质化学计量模型进行优化。最终模型通过堆叠几个蛋白质化学计量机器学习模型的两步方法创建。该模型应用于 Enamine 的广泛虚拟化合物数据库,从其中预测了 6 亿个虚拟化合物中的前 22,000 个进行聚类,最终得到 46 个具有化学多样性的候选物。对 32 个候选物进行了亚选择并进行合成,随后使用基于阻抗的测定法进行测试。鉴定出五种具有抑制 NET 活性的命中化合物(命中率为 16%),其抑制活性达到亚微摩尔水平,具有进一步实验研究的潜力。该研究展示了一种数据驱动的方法来多样化已知的化学空间以识别新型配体,并且据我们所知,这是首次基于相关靶标的序列相似性选择该套配体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8f6/10052348/10af49d5dd80/ci2c01645_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验