Heyes Colin D, Groll Jürgen, Möller Martin, Nienhaus G Ulrich
Institut für Biophysik, Universität Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany.
Mol Biosyst. 2007 Jun;3(6):419-30. doi: 10.1039/b700055n. Epub 2007 May 18.
Poly(ethylene) glycol (PEG) is an excellent material to modify surfaces to resist non-specific protein adsorption. Linear PEG has been extensively studied both theoretically and experimentally and it has been found that resistance of PEG-coated surfaces to protein adsorption depends mainly on the molecular weight of the polymer and the surface grafting density. End-functionalized star-shaped PEGs allow for interpolymer crosslinking to form a dense layer. An excellent example of such a system consists of a 6-arm PEG/PPG (4 : 1) star polymer functionalized with isocyanate using IPDI. The end functionalization may be further biofunctionalized to recognize specific biomolecules such as streptavidin, His-tagged proteins, amino-terminated oligonucleotides and cell receptors. This functionalization may be patterned into specific geometries using stamping techniques or randomly distributed by statistical reaction of the end group with the biofunctional molecule in solution. The surface preparation uses simple spin-, dip- or spray-coating and produces smooth layers with low background fluorescence. These properties, together with the advantageous chemical properties of PEG, render the surfaces ideal for immobilizing proteins on surfaces with detection limits down to the single molecule level. Proteins immobilized on such surfaces are able to maintain their folded, functional form and are able to completely refold if temporarily exposed to denaturing conditions. Immobilized enzyme molecules were able to perform their function with the same activity as the enzyme in solution. Future directions of using surfaces coated with such crosslinked star polymers in highly sensitive and robust biotechnology applications will be discussed.
聚乙二醇(PEG)是一种用于修饰表面以抵抗非特异性蛋白质吸附的优异材料。线性PEG已在理论和实验方面得到广泛研究,并且发现PEG涂层表面对蛋白质吸附的抗性主要取决于聚合物的分子量和表面接枝密度。末端官能化的星形PEG允许聚合物间交联形成致密层。这种体系的一个出色例子是由使用异佛尔酮二异氰酸酯(IPDI)用异氰酸酯官能化的六臂PEG/PPG(4:1)星形聚合物组成。末端官能化可以进一步进行生物功能化,以识别特定的生物分子,如链霉亲和素、His标签蛋白、氨基末端寡核苷酸和细胞受体。这种功能化可以使用压印技术图案化为特定几何形状,或者通过末端基团与溶液中的生物功能分子的统计反应随机分布。表面制备采用简单的旋涂、浸涂或喷涂,并产生具有低背景荧光的光滑层。这些特性,连同PEG有利的化学性质,使这些表面成为将蛋白质固定在表面上的理想选择,检测限低至单分子水平。固定在这些表面上的蛋白质能够保持其折叠的功能形式,并且如果暂时暴露于变性条件下能够完全重新折叠。固定化的酶分子能够以与溶液中的酶相同的活性发挥其功能。将讨论在高度敏感和稳健的生物技术应用中使用涂覆有这种交联星形聚合物的表面的未来方向。